Jump to content

Diesel engine

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by DaddyT (talk | contribs) at 23:01, 22 February 2006 (Advantages and disadvantages versus spark-ignition engines). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The diesel engine is a type of internal combustion engine; more specifically, it is a compression ignition engine, in which the fuel is ignited by being suddenly exposed to the high temperature and pressure of a compressed gas, rather than by a separate source of ignition, such as a spark plug, as is the case in of the gasoline engine.

This is known as the diesel cycle, after German engineer Rudolf Diesel, who invented it in 1892 and received the patent on February 23, 1893 (1893-02-23). Diesel intended the engine to use a variety of fuels including coal dust. He demonstrated it in the 1900 Exposition Universelle (World's Fair) using peanut oil (see biodiesel).

How diesel engines work

When a gas is compressed, its temperature rises (see the combined gas law); a diesel engine uses this property to ignite the fuel. Air is drawn into the cylinder of a diesel engine and compressed by the rising piston at a much higher compression ratio than for a spark-ignition engine, up to 25:1. The air temperature reaches 700–900°C, or 1300–1650 °F. At the top of the piston stroke, diesel fuel is injected into the combustion chamber at high pressure, through an atomising nozzle, mixing with the hot, high-pressure air. The resulting mixture ignites and burns very rapidly. This contained explosion causes the gas in the chamber to heat up rapidly, which increases its pressure, which in turn forces the piston downwards. The connecting rod transmits this motion to the crankshaft, which is forced to turn, delivering rotary power at the output end of the crankshaft. Scavenging (pushing the exhausted gas-charge out of the cylinder, and drawing in a fresh draught of air) of the engine is done either by ports or valves. To fully realize the capabilities of a diesel engine, use of a turbocharger to compress the intake air is necessary; use of an aftercooler/intercooler to cool the intake air after compression by the turbocharger further increases efficiency.

In very cold weather, diesel fuel thickens and increases in viscosity and forms wax crystals or a gel. This can make it difficult for the fuel injector to get fuel into the cylinder in an effective manner, making cold weather starts difficult at times, though recent advances in diesel fuel technology have made these difficulties rare. A commonly applied advance is to electrically heat the fuel filter and fuel lines. Other engines utilize small electric heaters called glow plugs inside the cylinder to warm the cylinders prior to starting. A small number use resistive grid heaters in the intake manifold to warm the inlet air until the engine reaches operating temperature. Engine block heaters (electric resistive heaters in the engine block) plugged into the utility grid are often used when an engine is shut down for extended periods (more than an hour) in cold weather to reduce startup time and engine wear.

A vital component of any diesel engine system is the governor, which limits the speed of the engine by controlling the rate of fuel delivery. Unlike a petrol (gasoline) engine, the incoming air is not throttled, so the engine would overspeed if this was not done. Older governors were driven by a gear system from the engine (and thus supplied fuel only linearly with engine speed). Modern electronically-controlled engines achieve this through the electronic control module (ECM) or electronic control unit (ECU) - the engine-mounted "computer". The ECM/ECU receives an engine speed signal from a sensor and then using its algorithms and look-up calibration tables stored in the ECM/ECU, it controls the amount of fuel and its timing (the "start of injection") through electric or hydraulic actuators to maintain engine speed.

Controlling the timing of the start of injection of fuel into the pistons is key to minimising their emissions and maximising the fuel economy (efficiency) or the engine. The exact timing of starting this fuel injection into the cylinder is controlled electronically in most of today's modern engines. The timing is usually measured in units of crank angle of the piston before Top Dead Center (TDC). For example, if the ECM/ECU initiates fuel injection when the piston is 10 degrees before TDC, the start of injection or "timing" is said to be 10 deg BTDC. The optimal timing will depend on both the engine design as well as its speed and load.

Advancing (injecting when the piston is further away from TDC) the start of injection results in higher in-cylinder pressure and higher efficiency but also results in higher emissions of Oxides of Nitrogen (NOx). At the other extreme, very retarded start of injection or timing causes incomplete combustion. This results in higher Particulate Matter (PM) emissions and higher smoke.

Fuel injection in diesel engines

Mechanical and electronic injection

Older engines make use of a mechanical fuel pump and valve assembly which is driven by the engine crankshaft, usually via the timing belt or chain. These engines use simple injectors which are basically very precise spring-loaded valves which will open and close at a specific fuel pressure. The pump assembly consists of a pump which pressurises the fuel, and a disc-shaped valve which rotates at half crankshaft speed. The valve has a single aperture to the pressurised fuel on one side, and one aperture for each injector on the other. As the engine turns the valve discs will line up and deliver a burst of pressurised fuel to the injector at the cylinder about to enter its power stroke. The injector valve is forced open by the fuel pressure and the diesel is injected until the valve rotates out of alignment and the fuel pressure to that injector is cut off. Engine speed is controlled by a third disc, which rotates only a few degrees and is controlled by the throttle lever. This disc alters the width of the aperture through which the fuel passes, and therefore how long the injectors are held open before the fuel supply is cut, controlling the amount of fuel injected.

This contrasts with the more modern method of having a separate fuel pump (or set of pumps) which supplies fuel constantly at high pressure to each injector. Each injector then has a solenoid which is operated by an electronic control unit, which enables more accurate control of injector opening times depending on other control conditions such as engine speed and loading, resulting in better engine performance and fuel economy. This design is also mechanically simpler than the combined pump and valve design, making it generally more reliable, and less noisy, than its mechanical counterpart.

Both mechanical and electronic injection systems can be used in either direct or indirect injection configurations. (see below)

Indirect injection

An indirect injection diesel engine delivers fuel into a chamber off the combustion chamber, called a prechamber, where combustion begins and then spreads into the main combustion chamber.

Direct injection

Modern diesel engines make use of one of the following direct injection methods:

Distributor pump direct injection

The first incarnations of direct injection diesels used a rotary pump much like indirect injection diesels, however the injectors were mounted directly in the top of the combustion chamber rather than in a separate pre-combustion chamber. Examples are vehicles such as the Ford Transit and the Austin Rover Meastro and Montego with their Perkins Prima engine. The problem with these vehicles was the harsh noise that they made and particulate (smoke) emissions. This is the reason that in the main this type of engine was limited to commercial vehicles (the notable exceptions being the Maestro, Montego and Fiat Croma passenger cars). Fuel consumption was about 15% to 20% lower than indirect injection diesels which for some buyers was enough to compensate for the extra noise.

This type of engine was transformed by electronic control of the injection pump, pioneered by Volkswagen Audi group with the Audi 100 TDI introduced in 1989. The injection pressure was still only around 300 bar, but the injection timing, fuel quantity, exhaust gas recirculation and turbo boost were all electronically controlled. This gave much more precise control of these parameters which made refinement much more acceptable and emissions acceptably low. Fairly quickly the technology trickled down to more mass market vehicles such as the Mark 3 Golf TDI where it proved to be very popular. These cars were both more economical and more powerful than indirect injection competitors of their day.


Common rail direct injection

In older diesel engines, a distributor-type injection pump, regulated by the engine, supplies bursts of fuel to injectors which are simply nozzles through which the diesel is sprayed into the engine's combustion chamber.

In common rail systems, the distributor injection pump is eliminated. Instead an extremely high pressure pump stores a reservoir of fuel at high pressure - up to 1,800 bar (180MPa) - in a "common rail", basically a tube which in turn branches off to computer-controlled injector valves, each of which contains a precision-machined nozzle and a plunger driven by a solenoid.

Most European automakers have common rail diesels in their model lineups, even for commercial vehicles. Some Japanese manufacturers, such as Toyota, Nissan and recently Honda, have also developed common rail diesel engines.

Different car makers refer to their common rail engines by different names, e.g. DaimlerChrysler's CDI, Ford Motor Company's TDCi (most of these engines are manufactured by PSA), Fiat Group's (Fiat, Alfa Romeo and Lancia) JTD, Renault's DCi, GM/Opel's CDTi (most of these engines are manufactured by Fiat, other by Isuzu), Hyundai's CRDI, Mitsubishi's D-ID, PSA Peugeot Citroen's HDI, Toyota's D-4D, Volkswagen's TDi, and so on.

Unit direct injection

This also injects fuel directly into the cylinder of the engine. However, in this system the injector and the pump are combined into one unit positioned over each cylinder. Each cylinder thus has its own pump, feeding its own injector, which prevents pressure fluctuations and allows more consistent injection to be achieved. This type of injection system, also developed by Bosch, is used by Volkswagen AG in cars (where it is called Pumpe Düse - literally "pump nozzle"), and most major diesel engine manufacturers, in large commercial engines (Cat, Cummins, Detroit Diesel). With recent advancements, the pump pressure has been raised to 2,050 bar (205 MPa), allowing injection parameters similar to common rail systems.

Types of diesel engines

There are two classes of diesel engines: two-stroke and four-stroke. Most diesels generally use the four-stroke cycle, with some larger diesels operating on the two-stroke cycle.

Normally, banks of cylinders are used in multiples of two, although any number of cylinders can be used as long as the load on the crankshaft is counterbalanced to prevent excessive vibration. The inline-6 is the most prolific in medium- to heavy-duty engines, though the V8 and straight-4 are also common.

As a footnote, Pre 1949, Sulzer experimented with 2 stroke engine with boost pressures as high as 6 atmospheres where all of the output power was taken from an exhaust turbine. The 2 stroke pistons directly drove air compressor pistons to make a positive displacement gas generator. Opposed pistons were connected by linkages instead of crankshafts. Several of these units could be connected together to provide power gas to one large output turbine. The overall thermal efficiency was roughly twice that of a simple gas turbine. (Source 'Modern High-Speed Oil Engines Volune II' by C.W.Chapman published by 'The Caxton publishing co. ltd.' reprinted in July 1949)

Advantages and disadvantages versus spark-ignition engines

Diesel engines are more efficient than gasoline/petrol engines of the same power (a common margin is 40% more miles per gallon for an efficient turbodiesel; for example, the current model Skoda Octavia, using Volkswagen engines, has a combined Euro mpg of 38.2mpg for the 102bhp petrol engine and 53.3mpg for the 105bhp - and heavier - diesel engine), resulting in lower fuel consumption. The higher compression ratio is helpful in raising efficiency, but diesel fuel contains approximately 30% more energy per unit volume than gasoline, and this is the crucial factor.

Naturally aspirated diesel engines are more massive than gasoline/petrol engines of the same power for two reasons; the first is that it takes a larger capacity diesel engine than a gasoline engine to produce the same power. This is essentially because the diesel cannot operate as quickly - the "rev limit" is lower - because getting the fuel-air mixture into a diesel engine is more difficult than a gasoline engine [1]. The second reason is that a diesel engine must be stronger to withstand the higher combustion pressures needed for ignition.

Yet it is this same build quality that has allowed some enthusiasts to acquire significant power increases with turbocharged engines through fairly simple and inexpensive modifications. A gasoline engine of similar size cannot put out a comparable power increase without extensive alterations because the stock components would not be able to withstand the higher stresses placed upon them. Since a diesel engine is already built to withstand higher levels of stress, it makes an ideal candidate for performance tuning with little expense. However it should be said that any modification that raises the amount of fuel and air put through a diesel engine will increase its operating temperature which will reduce its life and service interval requirements. These things are issues with newer, lighter, "high performance" diesel engines which aren't "overbuilt" to the degree of older engines and are being pushed to provide greater power in smaller engines.

The addition of a turbocharger or supercharger to the engine (see turbodiesel) greatly assists in increasing fuel economy and power output. Boost pressures can be higher on diesels than gasoline engines, and the higher compression ratio allows a diesel engine to be more efficient than a comparable spark ignition engine. Although the calorific value of the fuel is slightly lower at 45.3 megajoules per kilogram to gasoline at 45.8MJ/kg, diesel fuel is much heavier and fuel is sold by volume, so diesel contains more energy per litre or gallon. The increased fuel economy of the diesel over the petrol engine means that the diesel produces less carbon dioxide (CO2) per unit distance. Recently, advances in production and changes in the political climate have increased the availability and awareness of biodiesel, an alternative to petroleum-derived diesel fuel with a much lower net-sum emission of CO2, due to the absorption of CO2 by plants used to produce the fuel.

Diesel engines produce very little carbon monoxide as they burn the fuel in excess air except at full load, at which point a full stochiometric quantity of fuel is injected per cycle. However, they can produce black soot from their exhaust, consisting of unburned carbon compounds. This is often caused by worn injectors, which do not atomize the fuel sufficiently, or a faulty engine management system which allows more fuel to be injected than can be burned with the available air. Particles of the size normally called PM10 (particles of 10 micrometres or smaller) have been implicated in health problems, especially in cities. Modern diesel engines catch the soot in a particle filter, which when saturated is automatically regenerated by burning the particles. Other problems associated with the exhaust gases (nitrogen oxides, sulfur oxides) can be mitigated with further investment and equipment; some diesel cars now have catalytic converters in the exhaust.

The lack of an electrical ignition system greatly improves the reliability. The high durability of a diesel engine is also due to its overbuilt nature (see above) as well as the diesel's combustion cycle, which creates less-violent changes in pressure when compared to a spark-ignition engine, a benefit that is magnified by the lower rotating speeds in diesels. Diesel fuel is a better lubricant than gasoline so is less harmful to the oil film on piston rings and cylinder bores; it is routine for diesel engines to cover 250,000 miles or more without a rebuild.

Unfortunately, due to the greater compression force required and the increased weight of the stronger components, starting a diesel engine is a harder task. More torque is required to push the engine through compression.

Either an electrical starter or an air start system is used to start the engine turning. On large engines, pre-lubrication and slow turning of an engine, as well as heating, are required to minimize the possibility of damaging the engine during initial start-up and running. Some smaller military diesels can be started with an explosive cartridge that provides the extra power required to get the machine turning. In the past, Caterpillar and John Deere used a small gasoline "pony" motor in their tractors to start the primary diesel motor. The pony motor heated the diesel to aid in ignition and utilized a small clutch and transmission to actually spin up the diesel engine. Even more unusual was an International Harvester design in which the diesel motor had its own carburetor and ignition system, and started on gasoline. Once warmed up, the operator moved two levers to switch the motor to diesel operation, and work could begin. These engines had very complex cylinder heads (with their own gasoline combustion chambers) and in general were vulnerable to expensive damage if special care was not taken (especially in letting the engine cool before turning it off).

Aircraft, airship, hovercraft and light engine

You must add a |reason= parameter to this Cleanup template – replace it with {{Cleanup|section|reason=<Fill reason here>}}, or remove the Cleanup template.

Based on the opposed piston two stroke principle used by Junkers, Rolls-Royce, Napier and Coventry Climax the most recent addition to the diesel family of engines is the 'Dair'. Designed to be light weight, affordable and powerful the horizontally opposed aircraft engine replacement. The advent of a liquid cooled 100hp twin cylinder, four piston twin stroke diesel by Diesel Air Limited in the United Kingdom is sure to send waves through the light engine community. Called a "Dair-100" this revolutionary powerplant is new to the market and is designed to run on both diesel and A1 jet fuel.

The company, 'Diesel Air Limited' is now producing the powerplant for use and has applied for CAA Design approval. Successful test flights and use in the The Airship Technologies AT-10 airship first flew with DAIR-100 engines on 28th March 2002. With a displacement of 1810 cc the Dair is the first of a number of aluminium diesel aircraft engines up to 600 horsepower (450 kW) that have a comparable power to weight ratio comparable with modern petrol engines.

'Thielert GmbH' located at the small town of Lichtenstein, eastern Germany (not to be confused with the principality of Liechtenstein, between Switzerland and Austria) also produce Diesel engines certified for use in light aircraft. The company (unlike Dair) produce four-stroke, liquid-cooled, geared, turbo-diesel aircraft engines based on Mercedes automotive designs which will run on both Diesel and Jet Aviation fuel (JetA1). A 1.7-litre, 135-hp four-cylinder (based on the 1.7 turbo diesel Mercedes A-class power unit) is certified for retrofit to Cessna 172s and Piper Warriors which were originally equipped with the 160-hp Lycoming O-320 Avgas (petrol) engine. Although the weight of the 135-hp Thielert Centurion 1.7 at around 136kg, is similar to that of the 160-hp Lycoming O-320, its displacement is less than a third of that of the Lycoming. It however achieves maximum power at 2300 prop rpm (3900 crank rpm) as opposed to 2700 for the petrol Lycoming.

The Austrian aircraft firm Diamond Aircraft Industries offers its single-engine Diamond DA40-TDI Star with a Thielert Centurion 1.7' engine and also the Twin Star with two. The Star offers low fuel consumption with a very fuel efficient figure of 15.1 ltrs/hr. Several hundred Thielert-powered airplanes are now flying, and the company has recently certified a 4.0-litre, V8, 310HP version.

Automobile racing

Although the weight and lower output of a diesel engine tend to keep them away from automotive racing applications, there are many diesels being raced in classes that call for them, mainly in truck racing, as well in types of racing where these drawbacks are less severe, such as land speed record racing. Diesel engined dragsters even exist, despite the diesel's drawbacks being central to performance in this sport. In 1952, Cummins Diesel won the pole at the Indianapolis 500 race with a supercharged 3 liter diesel car, relying on torque and fuel efficiency to overcome weight and low peak power, and led most of the race until the badly situated air intake of the car swallowed enough debris from the track to disable the car.

Recently, there had been a renewed interest in racing with diesel engine and the VAG is one of the best example. Their DAKAR rally entrants for 2005 and 2006 are powered by their own line of TDI engines. Meanwhile, the five time Le Mans winner Audi R8 race car is going to be replaced by the Audi R10 in Le Mans 2006, which is powered by a 650 hp (485kW) and 1100N·m (810 lbf·ft) V12 TDI Common Rail diesel engine, however the significance of this is lessened by the fact that the race rules favour diesels[2].

Dieseling in spark-ignition engines

A gasoline (spark ignition) engine can sometimes act as a compression ignition engine under abnormal circumstances, a phenomenon typically described as "pinging" or "pinking" (during normal running) or "dieseling" (when the engine continues to run after the electrical ignition system is shut off). This is usually caused by hot carbon deposits within the combustion chamber that act as would a "glow plug" within a diesel or model aircraft engine. Excessive heat can also be caused by improper ignition timing and/or fuel/air ratio which in turn overheats the exposed portions of the spark plug within the combustion chamber.

Fuel and fluid characteristics

Diesel engines can operate on a variety of different fuels, depending on configuration, though the eponymous diesel fuel derived from crude oil is most common. Good-quality diesel fuel can be synthesised from vegetable oil and alcohol. Biodiesel is growing in popularity since it can frequently be used in unmodified engines, though production remains limited. Petroleum-derived diesel is often called "petrodiesel" if there is need to distinguish the source of the fuel.

The engines can work with thicker, heavier oil, or oil with higher viscosity, as long as it is heated to ease pumping and injection. These fuels are cheaper than clean, refined diesel oil, although they are dirtier. The biofuels straight vegetable oil (SVO) and waste vegetable oil (WVO) can fall into this category. Moving beyond that, use of low-grade fuels can lead to serious maintenance problems. Most diesel engines that power ships like supertankers are built so that the engine can safely use low grade fuels.

Ethanol is also used in some cases, since it has a high octane rating which means it can be highly compressed before spontaneously igniting. One way this is used is in E95 fuel which actually contains 5% gasoline along with 95% ethanol.

Normal diesel fuel is more difficult to ignite than gasoline because of its higher flash point, but once burning, a diesel fire can be extremely fierce.

Diesel applications

The vast majority of modern heavy road vehicles (trucks), ships, large-scale portable power generators, most farm and mining vehicles, and many long-distance locomotives have diesel engines. However, in the U.S. they are not as popular in passenger vehicles as they are in Europe as they are perceived as being heavier, noisier, of having performance characteristics which makes them slower to accelerate, and of being more expensive than petrol vehicles. In addition, before the mandatory reduction of sulphur in on-road diesel fuel to 15 parts per million, which will start at 15 Oct 2006 (2006-10-15) in the U.S. (1 June 2006 (2006-06-01) in Canada), diesel fuel used in North America has higher sulphur content than the fuel used in Europe, effectively limiting diesel use to industrial vehicles.

File:Mbe4000.jpg
Mercedes Benz MBE 4000 350-450HP (261-336kW)

In Europe, where tax rates in many countries make diesel fuel much cheaper than petrol, diesel vehicles are very popular and newer designs have significantly narrowed differences between petrol and diesel vehicles in the areas mentioned. One anecdote tells of Formula One driver Jenson Button, who was arrested while driving a diesel-powered BMW coupe at 230 km/h (about 140 mph) in France, where he was too young to have a petrol-engined car hired to him. Button dryly observed in subsequent interviews that he had actually done BMW a public relations service, as nobody had believed a diesel could be driven that fast. The BMW diesel lab in Steyr, Austria is led by Ferenc Anisits and is considered to be a leader in development of automotive diesel engines. Similarly, Mercedes Benz had a successful run of diesel-powered passenger cars in the late 1970s and 1980s. After a hiatus in the 1990s with relatively few diesel cars in its lineup, Mercedes Benz has revived diesel cars in its newer ranges with an emphasis on high performance versus the older models' lack thereof.

High-speed
High-speed (approximately 1200 rpm and greater) engines are used to power lorries (trucks), buses, tractors, cars, yachts, compressors, pumps and small generators.
Medium-speed
Large electrical generators are driven by medium speed engines, (approximately 300 to 1200 rpm) optimised to run at a set speed and provide a rapid response to load changes.
Low-speed
The largest diesel engines are used to power ships. These monstrous engines have power outputs over 80MW, turn at about 60 to 100 rpm, and are up to 15m tall. They often run on cheap low-grade fuel, which require extra heat treatment in the ship for tanking and before injection due to their low volatility. Companies such as Burmeister & Wain and Wärtsilä (e.g., Sulzer Diesels) design such large low speed engines. They are unusually narrow and tall due to the addition of a crosshead bearing. Today (2005), the Wärtsilä-Sulzer RTA96-C turbocharged two-stroke diesel engine is the most powerful and most efficient prime-mover in the world, with cylinder bores of 960mm (38 in) and stroke of 2500mm (98 in), producing up to 80MW (110,000 hp) in the 14-cylinder configuration.

The zeppelins Graf Zeppelin II and Hindenburg were propelled by reversible diesel engines. The direction of operation was changed by shifting gears on the camshaft. From full power forward, the engines could be brought to a stop, changed over, and brought to full power in reverse in less than 60 seconds. This was done before reversible pitch propellers for aircraft had been perfected. Reversible diesel engines have also been used in tugboats, ferries and other watercraft. [3] The weight and complexity of a gearbox in the power train is avoided by employing a reversing camshaft. The penalty is a dead interval during which the engine is inoperative, after which it was generally restarted with compressed air [4].

A few airplanes have been built that use diesel engines, such as the Junkers-powered Blohm & Voss Ha 139 of the late 1930s. This is quite rare because of the high importance of power-weight ratios in aeronautical applications, and the development of kerosene-powered jet engines and the closely-related turboprop engines. However, this may change in the near future. The newer automotive diesels have power-weight ratios comparable to the ancient spark-ignition designs common in general aviation aircraft, and have better fuel efficiency. Their use of electronic ignition, fuel injection, and sophisticated engine management systems also makes them far easier to operate than mass-produced spark-ignition aircraft engines, most of which still use carburetors. Combined with Europe's very favourable tax treatment of diesel fuel compared to petrol, these factors have led to considerable interest in diesel-powered small general aviation planes, and several manufacturers have recently begun selling diesel engines for this purpose. The Diamond Twin Star is currently one of the very few general aviation aircraft manufactured with diesel engines. It can be twice as efficient as a comparable twin aircraft due to the diesel engines made by Thielert. Another major advantage for aviation users is that diesel engines can be fuelled with jet fuel, which is produced in a much greater quantity than avgas. See aircraft engine.

Also, some motorcycles have been built using diesel engines.

Current and future developments

Already, many common rail and unit injection systems employ new injectors using stacked piezoelectric crystals in lieu of a solenoid, which gives finer control of the injection event.

Variable geometry turbochargers have flexible vanes, which move and let more air into the engine depending on load. This technology increases both performance and fuel economy. Boost lag is reduced as turbo impeller inertia is compensated for.

A technique called accelerometer pilot control (APC) uses a sensor called an accelerometer to provide feedback on the engine's level of noise and vibration and thus instruct the ECU to inject the minimum amount of fuel that will produce quiet combustion and still provide the required power (especially while idling.)

The next generation of common rail diesels are expected to use variable injection geometry, which allows the amount of fuel injected to be varied over a wider range, and variable valve timing similar to that on gasoline engines.

At least in the US, diesels will slowly face displacement by tougher emissions regulations. Other methods to achieve even more efficient combustion, such as HCCI (homogeneous charge compression ignition), are being studied.

Modern diesel facts

(Source: Robert Bosch GmbH)

Fuel passes through the injector jets at speeds of nearly 1500 miles per hour (2400 km/h) – as fast as the top speed of a jet plane.

Fuel is injected into the combustion chamber in less than 1.5ms – about as long as a camera flash.

The smallest quantity of fuel injected is one cubic millimetre – about the same volume as the head of a pin. The largest injection quantity at the moment for automobile diesel engines is around 70 cubic millimetres.

If the camshaft of a six-cylinder engine is turning at 4500 rpm, the injection system has to control and deliver 225 injection cycles per second.

On a demonstration drive, a Volkswagen 1-liter diesel-powered car used only 0.89 liter of fuel in covering 100 kilometers – making it probably the most fuel-efficient car in the world. Bosch’s high-pressure fuel injection system was one of the main factors behind the prototype’s extremely low fuel consumption. Production record-breakers in fuel economy include the Volkswagen Lupo 3L TDI and the Audi A2 3L 1.2 TDI with standard consumption figures of 3 liters of fuel per 100 kilometers. Their high-pressure diesel injection systems are also supplied by Bosch.

In 2001, nearly 36% of newly registered cars in Western Europe had diesel engines. Austria leads the league table of registrations of diesel-powered cars with 66%, followed by Belgium with 63% and Luxembourg with 58%. Germany, with 34.6% in 2001, was in the middle of the league table. By way of comparison: in 1996, diesel-powered cars made up only 15% of the new car registrations in Germany.

In 1998, for the very first time in the history of the legendary 24-hour race at the Nürburgring, a diesel-powered car was the overall winner – the BMW works team 320d, fitted with modern high-pressure diesel injection technology from Bosch.

Diesel Car History

Some facts about some of the older diesels by Philip Christian

The first production diesel car is widely believed to be the Mercedes 260D introduced in 1936, although I believe that Citroen had a small production run at about that time too.

The first production turbo diesel car was the Peugeot 604 turbo diesel with a 2.3 litre turbo diesel introduced in 1979.

Many Audi enthusiasts claim that the Audi 100 TDI was the first turbo charged direct injection diesel sold in 1989, but actually it isn't true, as the Fiat Croma, and also the Austin Rover Montego were sold with turbo direct injection in 1988. What was pioneering about the Audi 100 however was the use of electronic control of the engine, as the Fiat and Austin had purely mechanically controlled injection.

The electronic control of direct injection really made a difference in terms of emissions, refinement and power.

It's interesting to see that the big players in the diesel car market are the same ones who pioneered various developments (Mercedes, Peugeot/Citroen, Fiat, VW/Audi) with the sad exception of Austin Rover.

See also

  • Napier Deltic - A high-speed, lightweight (about 4 tons) diesel engine used in fast naval craft and some railway locomotives.
  • Junkers Jumo 205 - The most successful of the first series of production diesel aircraft engines.
  • Elsbett - An improved multi-fuel diesel engine design
  • Wärtsilä-Sulzer RTA96-C - World's most powerful, most efficient and largest diesel engine.