Jump to content

Semantic integration

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Neverclear (talk | contribs) at 18:36, 14 March 2011 (External links). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Semantic integration is the process of interrelating information from diverse sources, for example calendars and to do lists; email archives; physical, psychological, and social presence information; documents of all sorts; contacts (including social graphs); search results; and advertising and marketing relevance derived from them. In this regard, semantics focuses on the organization of and action upon information by acting as a mediary between heterogeneous data sources which may conflict not only by structure but also context or value.

In Enterprise Application Integration, semantic integration will facilitate or potentially automate the communication between computer systems using metadata publishing. Metadata publishing potentially offers the ability to automatically link ontologies. One approach to (semi-)automated ontology mapping requires the definition of a semantic distance or its inverse, semantic similarity and appropriate rules. Other approaches include so-called lexical methods, as well as methodologies that rely on exploiting the structures of the ontologies. For explicitly stating similarity/equality, there exist special properties or relationships in most ontology languages. OWL, for example has “sameIndividualAs” or “same-ClassAs”. Eventually systems design may see the advent of composable architectures where published semantic-based interfaces are joined together in new and meaningful capabilities. These will be predominately described through design-time declarative specifications, that could ultimately be rendered and executed at run-time.

Semantic integration can also be used to facilitate design-time activities of interface design and mapping. In this model, semantics are only explicitly applied to design and the run-time systems work at the syntax level. This "early semantic binding" approach can improve overall system performance while retaining the benefits of semantic driven design.

The Pacific Symposium on Biocomputing has been a venue for the popularization of the ontology mapping task in the biomedical domain, and a number of papers on the subject can be found in its proceedings.

See also

References