Jump to content

Rectified 5-cubes

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Tomruen (talk | contribs) at 00:15, 20 May 2011 (References). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.


5-cube

Rectified 5-cube

Birectified 5-cube

Rectified 5-orthoplex

5-orthoplex
Orthogonal projections in A5 Coxeter plane

In give-dimensional geometry, a rectified 5-cube is a convex uniform 5-polytope, being a rectification of the regular 5-cube.

There are unique 5 degrees of rectifications, the zeroth being the 5-cube, and the 5th and last being the 5-orthoplex. Vertices of the rectified 5-cube are located at the edge-centers of the 5-cube. Vertices of the birectified 5-ocube are located in the square face centers of the 5-cube.

Rectified 5-cube

Rectified 5-cube
Type uniform polyteron
Schläfli symbol t1{4,3,3,3}
Coxeter-Dynkin diagrams
4-faces 42
Cells 200
Faces 400
Edges 320
Vertices 80
Vertex figure
tetrahedral prism
Petrie polygon Decagon
Coxeter groups BC5, [3,3,3,4]
Properties convex

Alternate names

  • Rectified penteract (acronym: rin) (Jonathan Bowers)

Construction

The rectified 5-cube may be constructed from the 5-cube by truncating its vertices at the midpoints of its edges.

Coordinates

The Cartesian coordinates of the vertices of the rectified 5-cube with edge length is given by all permutations of:

Images

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph
Dihedral symmetry [4] [4]

Birectified 5-cube

Birectified 5-cube
(and rectified 5-demicube)
Type uniform polyteron
Schläfli symbol t2{4,3,3,3}
t1{3,32,1}
Coxeter-Dynkin diagrams
4-faces 42
Cells 280
Faces 640
Edges 480
Vertices 80
Vertex figure
3-4 duoprism
Coxeter groups BC5, [3,3,3,4]
D5, [32,1,1]
Properties convex

Alternate names

  • Birectified 5-cube/penteract
  • Birectified pentacross/5-orthoplex/triacontiditeron
  • Penteractitriacontiditeron (acronym: nit) (Jonathan Bowers)
  • Rectified 5-demicube/demipenteract

Construction and coordinates

The birectified 5-cube may be constructed by birectifing the vertices of the 5-cube at of the edge length.

The Cartesian coordinates of the vertices of a birectified 5-cube having edge length 2 are all permutations of:

Images

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph
Dihedral symmetry [4] [4]

Thes polytopes are a part of 31 uniform polytera generated from the regular 5-cube or 5-orthoplex.

B5 polytopes

β5

t1β5

t2γ5

t1γ5

γ5

t0,1β5

t0,2β5

t1,2β5

t0,3β5

t1,3γ5

t1,2γ5

t0,4γ5

t0,3γ5

t0,2γ5

t0,1γ5

t0,1,2β5

t0,1,3β5

t0,2,3β5

t1,2,3γ5

t0,1,4β5

t0,2,4γ5

t0,2,3γ5

t0,1,4γ5

t0,1,3γ5

t0,1,2γ5

t0,1,2,3β5

t0,1,2,4β5

t0,1,3,4γ5

t0,1,2,4γ5

t0,1,2,3γ5

t0,1,2,3,4γ5

Notes

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "5D uniform polytopes (polytera)". o3x3o3o4o - rin, o3o3x3o4o - nit
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds