Quark–gluon plasma
This article needs to be updated.(June 2011) |
This article needs to be updated.(June 2011) |
A quark–gluon plasma (QGP) or quark soup[1] is a phase of quantum chromodynamics (QCD) which exists at extremely high temperature and/or density. This phase consists of (almost) free quarks and gluons, which are several of the basic building blocks of matter. Experiments at CERN's Super Proton Synchrotron (SPS) first tried to create the QGP in the 1980s and 1990s: the results led CERN to announce indirect evidence for a "new state of matter"[2] in 2000. Current experiments at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) are continuing this effort.[3]
Although the results have yet to be independently verified as of February 2010, scientists at Brookhaven RHIC have tentatively claimed to have created a quark-gluon plasma with an approximate temperature of 4 trillion degrees Celsius.[4]
Three new experiments running on CERN's Large Hadron Collider (LHC), ALICE,[5] ATLAS and CMS, will continue studying properties of QGP. Starting in November 2010, CERN will temporarily cease colliding protons, and begin colliding lead Ions for the ALICE experiment. They will be looking to create a QGP. They are expected to stop December 6, and return to colliding protons in January.[6] Within the first week of colliding these lead ions, the LHC appears to have created multiple quark-gluon plasmas with temperatures in the tens of trillions of degrees.
General introduction
Quark–gluon plasma is a state of matter in which the elementary particles that make up the hadrons of baryonic matter are freed of their strong attraction for one another under extremely high energy densities. These particles are the quarks and gluons that compose baryonic matter. [7] In normal matter quarks are confined; in the QGP quarks are deconfined. In classical QCD quarks are the Fermionic components of mesons and baryons while the gluons are considered the Bosonic components of such particles. The gluons are the force carriers, or bosons, of the QCD color force, while the quarks by themselves are their Fermionic matter counterparts.
Although the experimental high temperatures and densities predicted as producing a quark-gluon plasma have been realized in the laboratory, the resulting matter does not behave as a quasi-ideal state of free quarks and gluons, but, rather, as an almost perfect dense fluid.[8] Actually, the fact that the quark-gluon plasma will not yet be "free" at temperatures realized at present accelerators was predicted in 1984 as a consequence of the remnant effects of confinement.[9][10]
Why this is referred to as "plasma"
A plasma is matter in which charges are screened due to the presence of other mobile charges; for example: Coulomb's Law is modified to yield a distance-dependent charge. In a QGP, the color charge of the quarks and gluons is screened. The QGP has other analogies with a normal plasma. There are also dissimilarities because the color charge is non-abelian, whereas the electric charge is abelian. Outside a finite volume of QGP the color electric field is not screened, so that volume of QGP must still be color-neutral. It will therefore, like a nucleus, have integer electric charge.
How the QGP is studied theoretically
One consequence of this difference is that the color charge is too large for perturbative computations which are the mainstay of QED. As a result, the main theoretical tools to explore the theory of the QGP is lattice gauge theory. The transition temperature (approximately 175 MeV) was first predicted by lattice gauge theory. Since then lattice gauge theory has been used to predict many other properties of this kind of matter. The AdS/CFT correspondence is a new interesting conjecture allowing insights in QGP.
How it is created in the lab
The QGP can be created by heating matter up to a temperature of 2×1012 K, which amounts to 175 MeV per particle. This can be accomplished by colliding two large nuclei at high energy (note that 175 MeV is not the energy of the colliding beam). Lead and gold nuclei have been used for such collisions at CERN SPS and BNL RHIC, respectively. The nuclei are accelerated to ultrarelativistic speeds and slammed into each other. Due to the relativistic speeds they are Lorentz contracted. Each nucleus has a small probability of a sufficiently head-on hit for a QGP, many nuclei just graze, but the numbers that do collide is sufficient for experiment, and in the case of a storage ring, those that miss are often recycled. When they do collide, the resulting hot volume called a "fireball" is created after a head-on collision. Once created, this fireball is expected to expand under its own pressure, and cool while expanding. By carefully studying this flow, experimentalists hope to put the theory to test.
How the QGP fits into the general scheme of physics
QCD is one part of the modern theory of particle physics called the Standard Model. Other parts of this theory deal with electroweak interactions and neutrinos. The theory of electrodynamics has been tested and found correct to a few parts in a trillion. The theory of weak interactions has been tested and found correct to a few parts in a thousand. Perturbative aspects of QCD have been tested to a few percent. In contrast, non-perturbative aspects of QCD have barely been tested. The study of the QGP is part of this effort to consolidate the grand theory of particle physics.
The study of the QGP is also a testing ground for finite temperature field theory, a branch of theoretical physics which seeks to understand particle physics under conditions of high temperature. Such studies are important to understand the early evolution of our universe: the first hundred microseconds or so. While this may seem esoteric, it is crucial to the physics goals of a new generation of observations of the universe (WMAP and its successors). It is also of relevance to Grand Unification Theories or 'GUTS' which seek to unify the three fundamental forces of nature (excluding gravity).
Expected properties
Thermodynamics
The cross-over temperature from the normal hadronic to the QGP phase is about 175 MeV. This "crossover" may actually not be only a qualitative feature, but instead one may have to do with a true (second order) phase transition, e.g. of the universality class of the three-dimensional Ising model, as some theorists say, e.g. Frithjof Karsch and coworkers from the university of Bielefeld. The phenomena involved correspond to an energy density of a little less than 1 GeV/fm3. For relativistic matter, pressure and temperature are not independent variables, so the equation of state is a relation between the energy density and the pressure. This has been found through lattice computations, and compared to both perturbation theory and string theory. This is still a matter of active research. Response functions such as the specific heat and various quark number susceptibilities are currently being computed.
Flow
The equation of state is an important input into the flow equations. The speed of sound is currently under investigation in lattice computations. The mean free path of quarks and gluons has been computed using perturbation theory as well as string theory. Lattice computations have been slower here, although the first computations of transport coefficients have recently been concluded. These indicate that the mean free time of quarks and gluons in the QGP may be comparable to the average interparticle spacing: hence the QGP is a liquid as far as its flow properties go. This is very much an active field of research, and these conclusions may evolve rapidly. The incorporation of dissipative phenomena into hydrodynamics is another recent development that is still in an active stage.
Excitation spectrum
Does the QGP really contain (almost) free quarks and gluons? The study of thermodynamic and flow properties would indicate that this is an over-simplification. Many ideas are currently being evolved and will be put to test in the near future. It has been hypothesized recently that some mesons built from heavy quarks (such as the charm quark) do not dissolve until the temperature reaches about 350 MeV. This has led to speculation that many other kinds of bound states may exist in the plasma. Some static properties of the plasma (similar to the Debye screening length) constrain the excitation spectrum.
Experimental situation
Those aspects of the QGP which are easiest to compute are not the ones which are the easiest to probe in experiments. While the balance of evidence points towards the QGP being the origin of the detailed properties of the fireball produced in the RHIC, this is the main barrier which prevents experimentalists from declaring a sighting of the QGP. For a summary see 2005 RHIC Assessment.
The important classes of experimental observations are
- Single particle spectra (photons and dileptons)
- Strangeness production
- Photon and muon rates (and J/ψ melting)
- Elliptic flow
- Jet quenching
- Fluctuations
- Hanbury Brown and Twiss effect and Bose–Einstein correlations
Formation of quark matter
In April 2005, formation of quark matter was tentatively confirmed by results obtained at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC). The consensus of the four RHIC research groups was that they had created a quark-gluon liquid of very low viscosity. However, contrary to what was at that time still the widespread assumption, it is yet unknown from theoretical predictions whether the QCD "plasma", especially close to the transition temperature, should behave like a gas or liquid. Authors favoring the weakly interacting interpretation derive their assumptions from the lattice QCD calculation, where the entropy density of quark-gluon plasma approaches the weakly interacting limit. However, since both energy density and correlation shows significant deviation from the weakly interacting limit, it has been pointed out by many authors that there is in fact no reason to assume a QCD "plasma" close to the transition point should be weakly interacting, like electromagnetic plasma (see, e.g.,[11]). That being said, systematically improvable perturbative QCD quasiparticle models do a very good job of reproducing the lattice data for thermodynamical observables (pressure, entropy, quark susceptibility), including the aforementioned "significant deviation from the weakly-interacting limit", down to temperatures on the order of 2 to 3 times the critical temperature for the transition.[12][13][14]
See also
- Hadrons (that is mesons and baryons) and confinement
- Hadronization
- Neutron stars
- Plasma physics
- QCD matter Quantum Chromodynamics matter
- Quantum electrodynamics
- Quantum chromodynamics
- Quantum hydrodynamics
- Relativistic plasma
- Strangeness production
- Strange matter
References
- ^ Bohr, Henrik; Nielsen, H. B. (1977). "Hadron production from a boiling quark soup: A thermodynamical quark model predicting particle ratios in hadronic collisions". Nuclear Physics B. 128 (2): 275. Bibcode:1977NuPhB.128..275B. doi:10.1016/0550-3213(77)90032-3.
- ^ A New State of Matter - Experiments
- ^ Relativistic Heavy Ion Collider, RHIC
- ^ http://www.bnl.gov/rhic/news2/news.asp?a=1074&t=pr 'Perfect' Liquid Hot Enough to be Quark also people fuck goats in the arse because they are cool lik that Soup
- ^ Alice Experiment: Welcome to ALICE Portal
- ^ CERN Press Release November 4th 2010
- ^ The Indian Lattice Gauge Theory Initiative
- ^ WA Zajc (2008). "The fluid nature of quark-gluon plasma". Nuclear Physics A. 805: 283c–294c. arXiv:0802.3552. Bibcode:2008NuPhA.805..283Z. doi:10.1016/j.nuclphysa.2008.02.285.
{{cite journal}}
: CS1 maint: postscript (link) - ^ Plümer, M.; Raha, S.; Weiner, R. M. (1984). "How free is the quark-gluon plasma". Nucl. Phys. A. 418: 549–557. Bibcode:1984NuPhA.418..549P. doi:10.1016/0375-9474(84)90575-XTemplate:Inconsistent citations
{{cite journal}}
: Unknown parameter|lastauthoramp=
ignored (|name-list-style=
suggested) (help)CS1 maint: postscript (link). - ^ Plümer, M.; Raha, S.; Weiner, R. M. (1984). "Effect of confinement on the sound velocity in a quark-gluon plasma". Phys. Lett. B. 139 (3): 198–202. Bibcode:1984PhLB..139..198P. doi:10.1016/0370-2693(84)91244-9Template:Inconsistent citations
{{cite journal}}
: Unknown parameter|lastauthoramp=
ignored (|name-list-style=
suggested) (help)CS1 maint: postscript (link). - ^ Miklos Gyulassy (2004). "The QGP Discovered at RHIC". arXiv:nucl-th/0403032.
{{cite arXiv}}
:|class=
ignored (help) - ^ Andersen; Leganger; Strickland; Su (2011). "NNLO hard-thermal-loop thermodynamics for QCD". Physics Letters B. 696. arXiv:1009.4644. Bibcode:2011PhLB..696..468A. doi:10.1016/j.physletb.2010.12.070.
- ^ Andersen; Michael Strickland; Nan Su (2010). "Gluon Thermodynamics at Intermediate Coupling". Physical Review Letters. 104 (12). arXiv:0911.0676. Bibcode:2010PhRvL.104l2003A. doi:10.1103/PhysRevLett.104.122003.
- ^ Blaizot; Iancu; Rebhan (2003). "Thermodynamics of the high-temperature quark-gluon plasma". arXiv:hep-ph/0303185.
{{cite arXiv}}
:|class=
ignored (help)
External links
- The Relativistic Heavy Ion Collider at Brookhaven National Laboratory
- The Alice Experiment at CERN
- The Indian Lattice Gauge Theory Initiative
- Quark matter reviews: 2004 theory, 2004 experiment
- Lattice reviews: 2003, 2005
- BBC article mentioning Brookhaven results
- Physics News Update article on the quark-gluon liquid, with links to preprints
- Read for free : "Hadrons and Quark-Gluon Plasma" by Jean Letessier and Johann Rafelski Cambridge University Press (2002) ISBN 0 521 38536 9 , Cambridge, UK;
Suggested Reading
- Murtaza, Ghulam (2006). "Quark Gluon Plasma and Some Collective Modes" (PDF). Ghulam Murtaza - Abdus Salam Chair in Physics). National Center for Physics and Government College University.
{{cite web}}
: Cite has empty unknown parameter:|coauthors=
(help)