Jump to content

Decomposition

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Ddcm8991 (talk | contribs) at 20:03, 12 March 2012. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A mummified rat.

Decomposition (or rotting) is the process by which organic material is broken down into simpler forms of matter. The process is essential for recycling the finite matter that occupies physical space in the biome. Bodies of living organisms begin to decompose shortly after death. Although no two organisms decompose in the same way, they all undergo the same sequential stages of decomposition. The science which studies decomposition is generally referred to as taphonomy from the Greek word taphos, meaning tomb.

One can differentiate abiotic from biotic decomposition (biodegradation). The former means "degradation of a substance by chemical or physical processes, eg hydrolysis).[1] The latter one means "the metabolic breakdown of materials into simpler components by living organisms",[2] typically by microorganisms.

Human decomposition

Stages

Five general stages are used to describe the process of decomposition: Fresh, Bloat, Active and Advanced Decay, and Dry/Remains.[3] The general stages of decomposition are coupled with two stages of chemical decomposition: autolysis and putrefaction.[4] These two stages contribute to the chemical process of decomposition, which breaks down the main components of the body

Fresh

The fresh stage begins immediately after the heart stops beating.[5] Since blood is no longer being pumped through the body it drains to the dependent portions of the body, under gravity, creating an overall bluish-purple discolouration termed livor mortis or, more commonly, lividity. Shortly after death, within three to six hours, the muscular tissues become rigid and incapable of relaxing which is known as rigor mortis. From the moment of death, the body begins losing heat to the surrounding environment, resulting in an overall cooling called algor mortis.[6]

Once the heart stops, chemical changes occur within the body and result in changes in pH, causing cells to lose their structural integrity. The loss of cell structure brings about the release of cellular enzymes capable of initiating the breakdown of surrounding cells and tissues. This process is known as autolysis. Visible changes caused by decomposition are limited during the fresh stage, although autolysis may cause blisters to appear at the surface of the skin.[7]

Oxygen present in the body is quickly depleted by the aerobic organisms found within. This creates an ideal environment for the proliferation of anaerobic organisms. Anaerobic organisms, originating in the gastrointestinal tract and respiratory system, begin to transform carbohydrates, lipids, and proteins, to yield organic acids (propionic acid, lactic acid) and gases (methane, hydrogen sulphide, ammonia). The process of microbial proliferation within a body is referred to as putrefaction and leads to the second stage of decomposition, known as bloat.[5]

Blowflies and flesh flies are the first carrion insects to arrive, and seek a suitable oviposition site.[3]

Bloat

The bloat stage provides the first clear visual sign that microbial proliferation is underway. In this stage, anaerobic metabolism takes place, leading to the accumulation of gases, such as hydrogen sulphide, carbon dioxide, and methane. The accumulation of gases within the bodily cavity causes the distention of the abdomen and gives a cadaver its overall bloated appearance.[8] The gases produced also cause natural liquids and liquefying tissues to become frothy.[6] As the pressure of the gases within the body increases, fluids are forced to escape from natural orifices, such as the nose, mouth, and anus, and enter the surrounding environment. The buildup of pressure may also cause rupturing of the skin.[8]

Intestinal anaerobic bacteria transform haemoglobin into sulfhemoglobin and other colored pigments. The associated gases which accumulate within the body at this time aid in the transport of sulfhemoglobin throughout the body via the circulatory and lymphatic systems, giving the body an overall marbled appearance.[9]

If insects have access, maggots hatch and begin to feed on the body’s tissues.[3] Maggot activity, typically confined to natural orifices and masses under the skin, causes the skin to slip and hair to detach from the skin.[6] Maggot feeding, and the accumulation of gases within the body, eventually leads to post-mortem skin ruptures which will then further allow purging of gases and fluids into the surrounding environment.[5] Ruptures in the skin allow oxygen to re-enter the body and provide more surface area for the development of fly larvae and the activity of aerobic microorganisms.[8] The purging of gases and fluids results in the strong distinctive odours associated with decay.[3]

Active Decay

Active decay is characterized by the period of greatest mass loss. This loss occurs as a result of both the voracious feeding of maggots and the purging of decomposition fluids into the surrounding environment.[8] The purged fluids accumulate around the body and create a cadaver decomposition island (CDI).[5] Liquefaction of tissues and disintegration become apparent during this time and strong odours persist.[3] The end of active decay is signaled by the migration of maggots away from the body to pupate.[5]

Advanced Decay

Decomposition is largely inhibited during advanced decay due to the loss of readily available cadaveric material.[8] Insect activity is also reduced during this stage.[6] When the carcass is located on soil, the area surrounding it will show evidence of vegetation death.[8] The CDI surrounding the carcass will display an increase in soil carbon and nutrients, such as phosphorus, potassium, calcium, and magnesium;[5] changes in pH; and a significant increase in soil nitrogen.[10]

Dry/Remains

During the dry/remains stage, the resurgence of plant growth around the CDI may occur and is a sign that the nutrients present in the surrounding soil have not yet returned to their normal levels.[8] All that remains of the cadaver at this stage is dry skin, cartilage, and bones,[3] which will become dry and bleached if exposed to the elements.[6] If all soft tissue is removed from the cadaver, it is referred to as completely skeletonized, but if only portions of the bones are exposed, it is referred to as partially skeletonised.[11]

Pig carcass in the different stages of decomposition: Fresh > Bloat > Active decay > Advanced decay > Dry remains

Plant decomposition

A decaying peach over a period of six days. Each frame is approximately 12 hours apart, as the fruit shrivels and becomes covered with mold.

Decomposition of plant matter occurs in many stages. It begins with leaching by water; the most easily lost and soluble carbon compounds are liberated in this process. Another early process is physical breakup or fragmentation of the plant material into smaller bits which have greater surface area for microbial colonization and attack. In smaller dead plants, this process is largely carried out by the soil invertebrate fauna, whereas in the larger plants, primarily parasitic life-forms such as insects and fungi play a major breakdown role and are not assisted by numerous detritivore species. Following this, the plant detritus (consisting of cellulose, hemicellulose, microbial products, and lignin) undergoes chemical alteration by microbes. Different types of compounds decompose at different rates. This is dependent on their chemical structure. For instance, lignin is a component of wood, which is relatively resistant to decomposition and can in fact only be decomposed by certain fungi, such as the black-rot fungi. Said fungi are thought to be seeking the nitrogen content of lignin rather than its carbon content[citation needed]. Lignin is one such remaining product of decomposing plants with a very complex chemical structure causing the rate of microbial breakdown to slow. Warmth determines the speed of plant decay, with the rate of decay increasing as heat increases, i.e. a plant in a warm environment will decay over a shorter period of time. In most grassland ecosystems, natural damage from fire, insects that feed on decaying matter, termites, grazing mammals, and the physical movement of animals through the grass are the primary agents of breakdown and nutrient cycling, while bacteria and fungi play the main roles in further decomposition.


The chemical aspects of plant decomposition always involve the release of carbon dioxide.

Animal decomposition

Ants eating a dead snake

Decomposition begins at the moment of death, caused by two factors: autolysis, the breaking down of tissues by the body's own internal chemicals and enzymes, and putrefaction, the breakdown of tissues by bacteria. These processes release gases that are the chief source of the unmistakably putrid odor of decaying animal tissue.

Most decomposers are bacteria or fungi, though scavengers also play an important role in decomposition if the body is accessible to insects and other animals. The most important insects that are involved in the process include the flesh-flies (Sarcophagidae) and blow-flies (Calliphoridae), such as the green-bottle fly seen in the summer. The most important non-insect animals that are typically involved in the process include larger scavengers, such as: coyotes, dogs, wolves, foxes, rats, crows and vultures. Some of these scavengers also remove and scatter bones, which they ingest at a later time.

Food decomposition

The decomposition of food, called spoilage in this context, is an important field of study within food science.

Importance to forensics

Various sciences study the decomposition of bodies under the general rubric of forensics because the usual motive for such studies is to determine the time and cause of death for legal purposes:

  • Forensic taphonomy specifically studies the processes of decomposition in order to apply the biological and chemical principles to forensic cases in order to determine post-mortem interval (PMI), post-burial interval as well as to locate clandestine graves.
  • Forensic pathology studies the clues to the cause of death found in the corpse as a medical phenomenon.
  • Forensic entomology studies the insects and other vermin found in corpses; the sequence in which they appear, the kinds of insects, and where they are found in their life cycle are clues that can shed light on the time of death, the length of a corpse's exposure, and whether the corpse was moved.[12][13]
  • Forensic anthropology is the branch of physical anthropology that studies skeletons and human remains, usually to seek clues as to the identity, race, and sex of their former owner.[14][15]

The University of Tennessee Anthropological Research Facility (better known as the Body Farm) in Knoxville, Tennessee has a number of bodies laid out in various situations in a fenced-in plot near the medical center. Scientists at the Body Farm study how the human body decays in various circumstances to gain a better understanding into decomposition.

Factors affecting decomposition

Exposure to the elements

A dead body that has been exposed to the open elements, such as water and air, will decompose more quickly and attract much more insect activity than a body that is buried or confined in special protective gear or artifacts. This is due, in part, to the limited number of insects that can penetrate a coffin and the lower temperatures under soil.

The rate and manner of decomposition in an animal body is strongly affected by a number of factors. In roughly descending degrees of importance, they are:

The speed at which decomposition occurs varies greatly. Factors such as temperature, humidity, and the season of death all determine how fast a fresh body will skeletonize or mummify. A basic guide for the effect of environment on decomposition is given as Casper's Law (or Ratio): if all other factors are equal, then, when there is free access of air a body decomposes twice as fast than if immersed in water and eight times faster than if buried in earth. Ultimately, the rate of bacterial decomposition acting on the tissue will be depend upon the temperature of the surroundings. Colder temperatures decrease the rate of decomposition while warmer temperatures increase it.

The most important variable is a body's accessibility to insects, particularly flies. On the surface in tropical areas, invertebrates alone can easily reduce a fully fleshed corpse to clean bones in under two weeks. The skeleton itself is not permanent; acids in soils can reduce it to unrecognizable components. This is one reason given for the lack of human remains found in the wreckage of the Titanic, even in parts of the ship considered inaccessible to scavengers. Freshly skeletonized bone is often called "green" bone and has a characteristic greasy feel. Under certain conditions (normally cool, damp soil), bodies may undergo saponification and develop a waxy substance called adipocere, caused by the action of soil chemicals on the body's proteins and fats. The formation of adipocere slows decomposition by inhibiting the bacteria that cause putrefaction.

In extremely dry or cold conditions, the normal process of decomposition is halted – by either lack of moisture or temperature controls on bacterial and enzymatic action – causing the body to be preserved as a mummy. Frozen mummies commonly restart the decomposition process when thawed (see Ötzi the Iceman), whilst heat-desiccated mummies remain so unless exposed to moisture.

The bodies of newborns who never ingested food are an important exception to the normal process of decomposition. They lack the internal microbial flora that produce much of decomposition and quite commonly mummify if kept in even moderately dry conditions.

Artificial preservation

Embalming is the practice of delaying decomposition of human and animal remains. Embalming slows decomposition somewhat, but does not forestall it indefinitely. Embalmers typically pay great attention to parts of the body seen by mourners, such as the face and hands. The chemicals used in embalming repel most insects, and slow down bacterial putrefaction by either killing existing bacteria in or on the body themselves or by "fixing" cellular proteins, which means that they cannot act as a nutrient source for subsequent bacterial infections. In sufficiently dry environments, an embalmed body may end up mummified and it is not uncommon for bodies to remain preserved to a viewable extent after decades. Notable viewable embalmed bodies include those of:

Environmental preservation

A body buried in a sufficiently dry environment may be well preserved for decades. This was observed in the case for murdered civil rights activist Medgar Evers, who was found to be almost perfectly preserved over 30 years after his death, permitting an accurate autopsy when the case of his murder was re-opened in the 1990s.[16]

Bodies submerged in a peat bog may become naturally "embalmed", arresting decomposition and resulting in a preserved specimen known as a bog body. The time for an embalmed body to be reduced to a skeleton varies greatly. Even when a body is decomposed, embalming treatment can still be achieved (the arterial system decays more slowly) but would not restore a natural appearance without extensive reconstruction and cosmetic work, and is largely used to control the foul odors due to decomposition.

An animal can be preserved almost perfectly, for millions of years in a resin such as amber.

There are some examples where bodies have been inexplicably preserved (with no human intervention) for decades or centuries and appear almost the same as when they died. In some religious groups, this is known as incorruptibility. It is not known whether or for how long a body can stay free of decay without artificial preservation.[17]

See also

References

  1. ^ Water Quality Vocabulary. ISO 6107-6:1994.
  2. ^ Water Words Dictionary (WWD)
  3. ^ a b c d e f Payne, J.A. (1965). "A summer carrion study of the baby pig sus scrofa Linnaeus". Ecology. 46 (5): 592–602. doi:10.2307/1934999.
  4. ^ Forbes, S.L. (2008). "Decomposition Chemistry in a Burial Environment". In M. Tibbett, D.O. Carter (ed.). Soil Analysis in Forensic Taphonomy. CRC Press. pp. 203–223. ISBN 1420069918.
  5. ^ a b c d e f Carter D.O., Yellowlees, D., Tibbett M. (2007). "Cadaver decomposition in terrestrial ecosystems". Naturwissenschaften. 94 (1): 12–24. doi:10.1007/s00114-006-0159-1. PMID 17091303.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ a b c d e Janaway R.C., Percival S.L., Wilson A.S. (2009). "Decomposition of Human Remains". In Percival, S.L. (ed.). Microbiology and Aging. Springer Science + Business. pp. 13–334. ISBN 1588296407.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. ^ Knight, Bernard (1991). Forensic pathology. Oxford University Press. ISBN 0195209036.
  8. ^ a b c d e f g Carter D.O., Tibbett M. (2008). "Cadaver Decomposition and Soil: Processes". In M. Tibbett, D.O. Carter (ed.). Soil Analysis in Forensic Taphonomy. CRC Press. pp. 29–51. ISBN 1420069918.
  9. ^ Pinheiro, J. (2006). "Decay Process of a Cadaver". In A. Schmidt, E. Cumha, J. Pinheiro (ed.). Forensic Anthropology and Medicine. Humana Press. pp. 85–116. ISBN 1588298248.{{cite book}}: CS1 maint: multiple names: editors list (link)
  10. ^ Vass A.A., Bass W.M., Wolt J.D., Foss J.E., Ammons J.T. (1992). "Time since death determinations of human cadavers using soil solution". Journal of Forensic Sciences. 37 (5): 1236–1253. PMID 1402750.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Dent B.B., Forbes S.L., Stuart B.H. "Review of human decomposition processes in soil". Environmental Geology. 45: 576–585. doi:10.1007/s00254-003-0913-z.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Smith, KGV. (1987). A Manual of Forensic Entomology. Cornell Univ. Pr. p. 464. ISBN 0801419271.
  13. ^ Kulshrestha P, Satpathy DK. (2001). "Use of beetles in forensic entomology". Forensic Sci. Int. 120 (1–2): 15–17. doi:10.1016/S0379-0738(01)00410-8. PMID 11457603.
  14. ^ Schmitt, A. (2006). Forensic Anthropology and Medicine: Complementary Sciences From Recovery to Cause of Death. Humana Press. p. 464. ISBN 1588298248. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  15. ^ Haglund, WD. (1996). Forensic Taphonomy: The Postmortem Fate of Human Remains. CRC Press. p. 636. ISBN 0849394341. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  16. ^ Quigley, C. (1998). Modern Mummies: The Preservation of the Human Body in the Twentieth Century. McFarland. pp. 213–214. ISBN 0786404922.
  17. ^ Clark, Josh. "How can a corpse be incorruptible?". HowStuffWorks.
Preceded by Stages of human development
Decomposition
Succeeded by