Jump to content

Talk:Polylogarithm

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 217.185.195.240 (talk) at 18:36, 28 May 2012 (Polylogarithm inversion formula: *** mirrors change in article.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

WikiProject iconMathematics B‑class Mid‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
BThis article has been rated as B-class on Wikipedia's content assessment scale.
MidThis article has been rated as Mid-priority on the project's priority scale.

Can we follow the convention of force-rendering indented equations using \, not \!. People who don't want rendered equations will get their wish if their preference is set to "HTML if possible or else PNG" but with the stronger \! force rendering, they are stuck. \, will render the equation as PNG when the "HTML if very simple or else PNG" preference is set, for those of us who want PNG.

Agreed. I will do this from now on. - Gauge 16:54, 20 May 2005 (UTC)[reply]

Is there a consensus on how to handle bulleted lists like the ones found on this page? It seems the wiki style and html style have different indentation properties, and I was wondering if one was preferred over the other here. I only noticed this after today's edit, so feel free to change them back if you liked the previous style better. - Gauge 18:59, 19 Jun 2005 (UTC)

Looks good to me. PAR 21:12, 19 Jun 2005 (UTC)

Borwein reference

Paul asks Linas:

With respect to your recent addition to the Polylogarithm article, I was wondering which Borwein reference you were using (there are two listed). Also is there an easy way to see how the two sums are equal? Thanks - PAR 8 July 2005 18:47 (UTC)

The ref I pulled this out of is actually Jonathan M. Borwein, David M. Bradley, Richard E. Crandall (2000). "Computational Strategies for the Riemann Zeta Function". J. Comp. App. Math. 121: p.11. {{cite journal}}: |pages= has extra text (help); External link in |title= (help)CS1 maint: multiple names: authors list (link) The above ref barely mentions polylogs, so I'm not sure its a worthwhile ref for this article. I did not verify this particular formula directly, just now, although I have derived a whole zoo that are very similar in nature in the past (this one looked correct and seemed worth jotting down). The trick for deriving these that I like to use is exploring the self-similarities of fractals; one gets entire rafts of these, for general rational numbers. The crazy rational-number relations on the Hurwitz zeta function is the source of these. The poles correspond to eigenvalues of transfer operators.

Off-topic: have you seen any good compendiums on the Lerch zeta function? I need some identities, and it seems that whenever I derive them manually, with great pain, I invariably find them in a book, a few weeks later. :( I need sums of the form

for s=1. These show up as related to the eigenfunctions of the ideal that generates the Weyl algebra. -- linas 8 July 2005 19:19 (UTC)

A very good reference is The Lerch Zeta-function by Laurincikas and Garunkstis (spelled without the diacritical marks.) This is not to say I understand its contents completely, but I might be able to find a formula for you. PAR 9 July 2005 04:01 (UTC)
Also - I saw you changed back to from . I saw your original change to and thought it was an error too, until I looked at the beginning of the article to see that is defined to be the principle value of the logarithm, so is correct. By the way, I think Ln(x) is the general multi-valued logarithm and ln(x) is the principal value, which is the reverse of what is in the article. It that correct? If so I will change it. PAR 9 July 2005 04:37 (UTC)

Yes. According to Abramowitz and Stegun, Ln(s) is the multi-valued function and ln(s) is the principle sheet.

Also ... maybe its worth splitting this article into two? It takes a while to load in the browser.

As to the fixes: I was not looking at the top of the article, but only locally: there was no z in the nearby formulas, so I assumed z was a typo. Next, the sum over poles clearly fails for μ=0, so I made a change to say that. Then silly me, I note that the sum fails for all μ=2πin for any integer n. Well, I could have just written that, but then I thought, what is the easiest way to say that this fails? Answer: when , and so that was the change I made. I was less concerned about global consistency over the entire article (which is important), but about local consistency 9which is even more important). -- linas 9 July 2005 17:08 (UTC)

Hi Linas - I agree, I think the change you made is best. I exchanged ln and Ln in the article, and now I'm suspicious of the equations in the Polylogarithm#Particular values section. This is the only place that ln occurred before. I will check them out, but if you get a chance, could you do the same? Thanks PAR 19:40, 9 July 2005 (UTC)[reply]
PS - I'm against splitting the article. I assume its slow because you are on dialup? People with broadband will be disadvantaged by splitting it. Since the direction is towards more broadband, I say leave it.

Error??

I think I see an error in one section, which is perpetuated. Please review. In the section "Series representations", there is a nice derivation, which starts as follows:

We may represent the polylogarithm as a power series about μ = 0 as follows: Consider the Mellin transform:

Above looks good to me.

The change of variables t = ab, u = a(1 - b) allows the integrals to be separated:

The first integral is the Beta function, and this is where the mistake is made. I get the following:

and so then I get

which is not what's in the article. Or am I hallucinating? The article continues:

For f = 1 we have, through the inverse Mellin transform:

But this should now read:

Right? This missing factor seems to be perpetuated down the line. Please review, let me know. linas 14:07, 2 May 2006 (UTC)[reply]


Equation 4 should read:
I think you forgot that the second integral in the middle part of equation 2 is not the polylogarithm, but times the polylogarithm. I have not checked past that point. I am not an error-free person, so let me know if this looks right. PAR 17:04, 2 May 2006 (UTC)[reply]
Dohhh. Thank you. I'm embarrassed. linas 00:19, 3 May 2006 (UTC)[reply]

Clarification?

This statement at the start of the third paragraph

"The special case s = 1 is the ordinary logarithm"

seems to say: Li[1](z) = Ln(z)

In contrast to the first image under http://en.wikipedia.org/wiki/Polylogarithm#Particular_values

Which says: Li[1](z) = -Ln(1-z)

Ac44ck 22:32, 28 August 2006 (UTC)[reply]

Ok its fixed. PAR 23:49, 28 August 2006 (UTC)[reply]

Confusion

The article currently states:

The polylogarithm is related to the Hurwitz zeta function by:
where Γ(s) is the gamma function. This holds for
and also for
(Note that Erdélyi's equivalent Equation [Erdélyi 1981 § 1.11-16] is not correct if we assume that the principal branches of the polylogarithm and the logarithm are used simultaneously.) This equation furnishes the analytical continuation of the series representation of the polylogarithm beyond its circle of convergence|z|= 1.
Alternatively, for all and for all , the inversion formula is

I've several comments/questions:

  • The restriction to for the first part seems directly contradicted by for all in the second part. There's not anything subtle I'm missing here, is there?
  • What exactly is the notation supposed to mean? The reversed brackets confuse me; should I read this as ? Are the reversed brackets supposed to denote "principle branch", perhaps?
  • The logarithm has a branch cut that extends from 0 to the left, so we should also say , to be pedantic, right?

Thanks linas 03:15, 14 October 2006 (UTC)[reply]

The reversed brackets are commonly used to denote open intervals in European literature (and standardized in ISO 31-11). And no, I don't like them. Fredrik Johansson 07:09, 14 October 2006 (UTC)[reply]
This entry should be rewritten and checked for accuracy. For one, it does not follow the convention of using ln for the principle branch of the natural logarithm. Also, I am used to () to express open intervals, and I don't know what is standard on Wikipedia, but whatever it is, it would be preferred. These additions were made by anonymous 80.203.48.14 and 128.39.229.124 in November of 2005 and are probably the same person - both users contributions consist entirely of their polylogarithm edits. PAR 13:41, 14 October 2006 (UTC)[reply]
regarding the first objection: The restriction to Re(s) > 1 is unnecessary and has been removed. Additionally, Im(x)≥ 0 has been corrected to Im(x) > 0.
regarding the third objection: The logarithm on the negative real axis is assumed to belong to the upper half plane, -π < Im(ln z) ≤ π, and z in [-∞,0] is allowed. 62.180.184.50 (talk) 13:39, 14 April 2009 (UTC)[reply]
I am changing the constraint from the present "0 < Re(x) <= 1 if Im(x) <= 0, and 0 <= Re(x) < 1 if Im(x) > 0" to "0 <= Re(x) < 1 if Im(x) >= 0 , and 0 < Re(x) <= 1 if Im(x) < 0". This excludes x=1 and replaces it by x=0. Since zeta(1-s,0) = zeta(1-s,1) for Re(s)>1, this is of relevance only for Re(s)<1, where now the x=0 pole of zeta(1-s,x) rather than the regular value at x=1 is related to the z=1 poles of Li_s(z) and Li_s(1/z). Correspondingly, I am replacing the excluded interval "]0;1[" by "]0;1]". 62.180.184.13 (talk) 20:45, 5 September 2009 (UTC)[reply]

Inversion Formula Corrections

Arrghh. The formulae for Li_s(z) + (-)^s Li_s(1/z) are at variance with the definition of the principal branch of the complex logarithm given earlier on: -pi < Im(ln z) <= pi. The constraint accompanying the preceding formula for Li_s(e^(2 pi i x)) + (-)^s Li_s(e^(-2 pi i x)) clearly requires 0<x<1 for the second zeta argument. How about some experimentation for Im(z)<0 using a CAS? 145.254.103.78 (talk) 16:58, 17 April 2008 (UTC)[reply]

Made the necessary corrections. 145.254.104.227 (talk) 19:15, 29 April 2008 (UTC)[reply]

More on the inversion formulae

To editor 85.164.137.141 - I reverted your edits not because they were wrong, but because I am not sure how to get your attention. I notice that these three edits are the only edits you have made on wikipedia, so I am not sure if you understand User talk pages or even article talk pages.

If you are reading this, could you please supply a reference or an explanation for your edits to the inversion formula? Thanks. PAR 01:19, 29 October 2006 (UTC)[reply]


I am the author of the general inversion formula and of their corrections. Indeed, I'm not familiar with the use of Wikipedia. I apologize if I created troubles; that was not my intention.


Concerning the general inversion formula:
  • I do not know any reference where one can find them (I don't have access to all the literature on the subject); such a reference probably exits, though. I derived them myself (not rigorously, I must admit) and checked numerically against Maple 10.
  • The apparent contradiction with the other inversion formula restricted to is probably due to the fact that they were (I guess) derived from the integral definition:
which is valid for .
  • A general definition valid and derives directly from the definition of the Lerch transcendent:
where is the principal branch of the logarithm and is the incomplete Gamma-function. This definition should allow rigorous derivations of various relations with a more precise validity range in the variables and . Note that, in this expression, all (but not part) of the can be replaced by . Note also that, although this definition seems compatible with Maple's one (checked numerically), it is quite possible that other programs/authors use different definitions.


Concerning the notations:
  • Abramowitz & Stegun ones are not universal. I am more used to denote the natural (Naperian) logarithm "ln" and the principal branch of the complex logarithm "log". Some Wikipedia pages use this convention.
  • As a matter of personal taste, I prefer to denote open intervals with reversed squared bracket because, e.g., can be interpreted as the coordinates of one point in the plane and not as the open interval .
  • These considerations are very secondary as long as the notations are clearly explained.


Finally, I think that this Wiki page is getting a little messy, and one could clean it up. I am not the most qualified person to do it, and I do not want to mess with the inputs from more competent contributors. Also, for the same reasons, I didn't re-revert the corrected inversion formula. —The preceding unsigned comment was added by 84.48.121.237 (talkcontribs) 12:46, 3 December 2006 (UTC).[reply]

An efficient algorithm for computing the polylogarithm and the Hurwitz zeta functions

Hi,

I just posted a paper An efficient algorithm for computing the polylogarithm and the Hurwitz zeta functions (11 pages) with the following abstract:

This paper develops an extension of the techniques given by Borwein's paper "An efficient algorithm for computing the Riemann zeta function", to the polylogarithm and the Hurwitz zeta function. The algorithm provides a rapid means of evaluating Lis(z) for general values of complex s and the region of complex z values given by |z2/(z-1)|<3.3. This region includes the the Hurwitz zeta ζ(s,q) for general complex s and real 1/4≤ q ≤3/4. By using the duplication formula, the range of convergence for the Hurwitz zeta can be extended to the whole real interval 0<q<1, although the algorithm does run logarithmically slower as it approaches the endpoints. In particular, this algorithm allows the exploration of the Hurwitz zeta in the critical strip, where fast algorithms are otherwise unavailable.

Comments/criticisms/corrections solicited on my talk page. linas 05:57, 28 December 2006 (UTC)[reply]

Pentagon identity problems

While the Pentagon Identity given in terms of the dilogarithm Li_2 holds for all arguments (x,y), the version

 L(x) + L(y) - L(xy) = L((x-xy)/(1-xy)) + L((y-xy)/(1-xy))

given in terms of the function

 L(x) := Li_2(x) + 1/2 ln(1-x) ln(x)

doesn't hold in general; it fails for instance with (x,y) = (2,-1), or (-i,-i), or (7/5 + i/3, 4/3 - i/2). 145.254.102.99 (talk) 14:23, 30 May 2008 (UTC).[reply]

The offending material has been removed.145.254.104.117 (talk) —Preceding comment was added at 19:31, 8 June 2008 (UTC)[reply]

Duplication formula?

While reviewing this article, I note that the duplication formula

is notable in its abscence. Any particuar reason? Erm, never mind, why, there it is. I must be going blind.

FWIW the general multiplication formula is the Gauss sum, for integer p:

Right?. linas 22:33, 29 December 2006 (UTC)[reply]


Technical

This page launches straight in like a section in a maths textbook and assumes the reader is familiar with formal mathematical jargon and the general context of polylogarithms. This should not be assumed. I suggest adding a leading paragraph for nontechnical readers looking to understand the basics of what a polylogarithm is, and perhaps some of its more important applications in other disciplines, if any, per Wikipedia:Make_technical_articles_accessible#Articles_that_are_unavoidably_technical. It looks to me like it could be something like the analog of a logarithm in complex analysis, but I could be way off as the maths is a bit over my head. --Rogerb67 (talk) 11:13, 3 October 2008 (UTC)[reply]

Changed {{technical}} to {{context}}, which seems more appropriate.--Rogerb67 (talk) 22:29, 3 October 2008 (UTC)[reply]
I honestly don't think that a non-technical reader can hope to understand what a polylogarithm is. It might be possible, however, to communicate some basic idea of what a special function is (without simple redirection to that article) and the idea that this is one that comes up in problems with spin statistics (and another sentence on what those equally intractable things might be) (c.f. existing comments on B-E and F-D distributions). Comments on this opinion? One way or another, it's time to do something and get rid of that "fix me" box. As long as the introduction is under discussion, I also think that the pictures break up the text unnecessarily and detrimentally; shall we move these either below the introductory paragraphs or off to the side? Calavicci (talk) 20:13, 28 October 2009 (UTC)[reply]
I really don't know how to convey to a casual non-technical reader what a polylogarithm is. The simplest definition is the series expression at the top of the page. To paraphrase Forrest Gump, a polylogarithm is as a polylogarithm does. And what it does is to make those problems in BE and FD physics more "tractable". Even more, the BE distribution pops up in a non-physics way in graph theory, e.g. dynamic connectivity in the internet. And these are only the practical applications in my experience. I bet there are other practical applications, and there are loads of purely mathematical applications. Check the "what links here" link on the main page. There must be fifty links, and probably 80 percent are mathematical. How do you explain vector calculus to someone who has not yet learned algebra? You try to explain the problems it solves, but if the problems are beyond the experience of that person, you still have not shed any light on the subject. I think the best you can do is to say "study physics, study statistical physics, study quantum statistical physics, and then you will see the value of the polylogarithm and how it is used. I mean, it sounds like you have ideas on how the article should be but not the technical knowledge. I might have the technical knowledge, but no idea how to improve the article. If you want to go back and forth on this, maybe we can fix it. PAR (talk) 05:05, 29 October 2009 (UTC)[reply]

Suspected typo in limiting behavior

I believe that the formula: is incorrect, as written. Looking at the cited Wood reference, it seems like the given formula matches the expression given by Wood in Section 22...however, the associated text cites Equation 11.3, which has a negative sign (i.e. -e^mu). Also, Li(z)>0 for z>0, so a negative limiting behavior does not make sense. Finally, looking at a plot of x^(1/2)*Li_1/2(-e^(1/x)) using Mathematica suggests that the value of the function approaches -2/Sqrt[Pi] (or -1/Gamma[3/2]) as x->0+ (though there are admittedly significant numerical problems), which appears to lend credence to Wood's Equation 11.3. Thus, I suspect the correct formula is: . If noone objects/disagrees, I will fix this within the next couple of days. --GregRM (talk) 05:30, 2 December 2008 (UTC)[reply]

I made the change, as no one seems to have objected or otherwise commented. For what it's worth, however, it looks like the original expression without the negative sign may be correct if we only consider the real part of the result.--GregRM (talk) 18:52, 7 December 2008 (UTC)[reply]

Errors in relations with Debye functions

Both formulas expressing Debye functions expressed in terms of polylogarithms and vice versa are incorrect. These are the last two formulas in the section "Relationship to other functions". My suggestion concerning the last formula is the following:

This formula has been derived by successive partial integrations of the Debye integral and been tested numerically using MATHEMATICA. The correction of the first formula has still to be done. [This is my first Wikipedia talk, forgive me if something is wrong..] Heinzjuergen (talk) 18:26, 7 May 2009 (UTC)[reply]

So the cited reference Abramowitz & Stegun § 27.1, 27.7.7 is also wrong? Or does it actually say something different from Wikipedia at present? 62.180.184.6 (talk) 22:25, 24 August 2009 (UTC)[reply]
I have looked into the matter. Provided that the "Debye functions" are defined by
Z_n(z) = 1/(n-1)! int_z^infty t^(n-1)/(e^t-1) dt, (n = 1,2,3,...)
(which doesn't agree with the function Dn defined at the link provided in the article), the relations in the article are correct. I am therefore supplying this definition of Z_n in the article along with the two relations.
By the way, there is a similar situation with the "Inverse tangent integral" Tis(z) earlier on, where the link also gives no clue what is meant: one is redirected back to the polylogarithm page! 62.180.184.57 (talk) 08:19, 11 September 2009 (UTC)[reply]

Edits of 22 August 2009 by Sajoka

It is a good idea to read an article before making changes to it. Sajoka's additions to the "Particular values" Section paraphrase what is already found in the "Relationship to other functions" Section, where the matter indeed belongs. Thus Sajoka's introduction of

  b(n,x) = -n! (Li_n(-e^(i x)) + (-1)^n Li_n(-e^(-i x)))

coincides with

  Li_n(z) + (-1)^n Li_n(1/z) = -(2 pi i)^n/n! B_n(1/2 - ln(-1/z)/(2 pi i))

from that Section if z is set to -e^(i x). And that Dirichlet's eta(2n) relates to Li_(2n)(-1), that Dirichlet's beta(2n+1) relates to Li_(2n+1)(+-i), and that Riemann's zeta(2n) relates to Li_(2n)(1), are also found in that Section in a much more general (hence more useful) form.

This is why I am removing Sajoka's additions. 62.180.184.6 (talk) 22:25, 24 August 2009 (UTC)[reply]


To Sajoka: your (modified) addition to the "Particular values" Section doesn't meet the objections expressed above:
  • the addition doesn't concern particular values, but the relationship of the polylogarithm Li_s (for positive integer s) with the Hurwitz zeta function (i.e. the Bernoulli polynomials). It therefore belongs into the "Relationship to other functions" Section.
  • as stated above, more general forms of the relationship with the Hurwitz zeta function are already given in the "Relationship to other functions" Section. The only difference is that you write the Bernoulli polynomial as a sum of powers. This particular topic belongs to the article on Bernoulli polynomials, however.
  • at the start of the "Particular values" Section, the reader is already referred to the "Relationship to other functions" Section.
Both your modified addition and its placement are therefore still unsuitable; I will remove the material again in the near future. Please address my objections on this page if you like. 62.180.184.13 (talk) 18:47, 29 August 2009 (UTC)[reply]

Ok you are right, you may remove it. —Preceding unsigned comment added by Sajoka (talkcontribs) 14:56, 30 August 2009 (UTC)[reply]

Polylogarithm, 62.180.184.13 has smiled at you! Smiles promote WikiLove and hopefully this one has made your day better. Spread the WikiLove by smiling at someone else, whether it be someone you have had disagreements with in the past or a good friend. Go on, smile! Cheers, and happy editing!
Smile at others by adding {{subst:Smile}} to their talk page with a friendly message.

Thanks for your agreement! 62.180.184.13 (talk) 20:45, 5 September 2009 (UTC)[reply]

Footnotes

{{needs footnotes}} is the best notice here, even though its wording isn't quite adequate. Although you're using {{harv}}, there's a fair amount of text in the article where the cross-link from text to citation of supporting source is not supplied to the reader. Uncle G (talk) 10:49, 23 September 2010 (UTC)[reply]

I am the primary contributor to the polylogarithm article for the last two years or so (2009-2010) and I am familiar with the literature – printed (overview and historical papers from the reference list, a number of which were added by me) as well as on-line (Wolfram MathWorld and NIST dlmf) material. What caused me to work on this Wikipedia article was that it had a lot of substance already; by now it could be the most accurate and most complete resource available for the basic properties of the polylogarithm of complex order and complex argument – it was better than dlmf when dlmf appeared this year. I will perhaps work a bit more on the dilogarithm chapter and mention some of the history; otherwise I am convinced that more detailed citations are not practicable here.
One reason is that not many works cover the case of non-integer (and possibly complex) order and of complex argument; another is that some old mistakes are regularly perpetuated in the literature (for a recent example see the inversion relation (9.5) in the Maximon reference) – note that the present article contains a handful of warnings about this. Moreover, some basic formulae probably cannot be found anywhere in a form close to what appears here. Briefly put, in mathematics – where we are dealing with an unambiguous notion of truth – internal consistency and a self-explanatory exposition should take precedence over the assembly of an article from literature quotations (which may be wrong, or not apply in all circumstances).
Presumably in consequence of the "fix me" sticker pasted on top of the reference list, the Abramowitz & Stegun reference (a main mathematical reference work of the 20th century) has recently been deleted by a reader (indeed it contains no polylogarithm chapter); unfortunately, however, this reference is cited three times in the text (as A&S §27.8, §27.1 & 27.7.7, §27.7). Since no replacement citations were provided I am going to restore this reference. (A replacement for the second citation will be very hard to find, as its purpose is to justify the use of the name Debye function for a certain entity.) At the same time, I am going to remove the "fix me" sticker, as it is proving to be counterproductive – as far as I remember, no other reference was removed during the last two years, especially none that is actually cited in the text. 217.184.57.140 (talk) 11:07, 9 October 2010 (UTC)[reply]
The second part of the second citation mentioned above (i.e. A&S §27.7.7) has been replaced by a more satisfactory Wood §16. 217.184.57.149 (talk) 12:33, 9 October 2010 (UTC)[reply]

Polylogarithm inversion formula

I am interested in the "inversion formula" for this function, namely, with n in Z,

Li_n(z) + (-1)^n Li_n(1/z) = -(2 i pi)^n /n! B_n(1/2 + log(-z/(2 i pi))

in case z (in C) does not belong to [0, 1], etc., as given in the excellent polylogarithm article. There it is stated that the formula given in Erdélyi et al. (1981) is again not correct (also my experience in some formulae).

My question: I am interested in a reference to the proof of this corrected formula. The classical reference to the matter is the well-known, outdated Jonquière paper of 1889, with the wrong formula. — Preceding unsigned comment added by 79.235.232.78 (talk) 09:47, 25 April 2012 (UTC)[reply]

[I have edited your question a bit for readability, even though one should not do this!] The inversion formula for polylogarithms of integer order is just a special case of the inversion formula for arbitrary complex order s. As stated in the article, the latter is a consequence of the relation expressing the polylogarithm in terms of the Hurwitz zeta function: "The polylogarithm is consequently also related ...". In particular, by adding two instances of this relation, you get an inversion formula that involves four Hurwitz zeta functions. These can be reduced to a single one by means of a well-known functional relation between ζ(s, a) and ζ(s, a+1). In doing so, you may find it advantageous to omit the positive real axis at first, since you then have ln(−z) = −ln(−1/z).
You may also want to consult this paper by B.C. Berndt, which has the only proof freely available on the web that I am aware of at the moment (apart from the Jonquière and Wood references given in the article), but deals with the more general case of the Lerch transcendent. 217.184.105.53 (talk) 08:01, 17 May 2012 (UTC)[reply]
I have added the explanatory phrase "With assistance from functional relations for the Hurwitz zeta function ..." in the article. 217.184.240.120 (talk) 20:14, 17 May 2012 (UTC)[reply]
And I have included the Jonquière references where readers are warned that the formulae in Erdélyi at al. (1981) are not entirely correct. 217.184.224.2 (talk) 11:45, 28 May 2012 (UTC)[reply]