Jump to content

Frobenius covariant

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by R'n'B (talk | contribs) at 23:18, 27 July 2012 (Fix links to disambiguation page Matrix theory). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In matrix theory, the Frobenius covariants of a square matrix A are matrices Ai associated with the eigenvalues and eigenvectors of A.[1] Each covariant is a projection on the eigenspace associated with λi.

Frobenius covariants are the coefficients of Sylvester's formula, that expresses a function of a matrix f(A) as a linear combination of its values on the eigenvalues of A. They are named after the mathematician Ferdinand Frobenius.

Formal definition

Let A be a diagonalizable matrix with k distinct eigenvalues, λ1, …, λk. The Frobenius covariant Ai, for i = 1,…, k, is the matrix

Computing the covariants

The Frobenius covariants of a matrix A can be obtained from any eigendecomposition A = SDS−1, where S is non-singular and D is diagonal with Di,i = λi. If A has no multiple eigenvalues, then let ci be the ith left eigenvector of A, that is, the ith column of S; and let ri be the ith right eigenvector of A, namely the ith row of S−1. Then Ai = ciri.

If A has multiple eigenvalues then Ai = Σj cjrj, where the sum is over all rows and columns associated with the eigenvalue λi.[1]: p.521 

Example

Consider the two-by-two matrix:

This matrix has two eigenvalues, 5 and −2. The corresponding eigen decomposition is

Hence the Frobenius covariants are

References

  1. ^ a b Roger A. Horn and Charles R. Johnson (1991), Topics in Matrix Analysis. Cambridge University Press, ISBN 978-0-521-46713-1