Bochner's theorem
In mathematics, Bochner's theorem (named for Salomon Bochner) characterizes the Fourier transform of a positive finite Borel measure on the real line. More generally in harmonic analysis, Bochner's theorem asserts that under Fourier transform a continuous positive definite function on a locally compact abelian group corresponds to a finite positive measure on the Pontryagin dual group.
The theorem
Bochner's theorem says the converse is true, i.e. every positive definite function Q is the Fourier transform of a positive finite Borel measure. A proof can be sketched as follows.
Let F0(R) be the family of complex valued functions on R with finite support, i.e. f(x) = 0 for all but finitely many x. The positive definite kernel K(x, y) induces a sesquilinear form on F0(R). This in turn results in a Hilbert space
whose typical element is an equivalence class [g]. For a fixed t in R, the "shift operator" Ut defined by (Utg)(x) = g(x - t), for a representative of [g] is unitary. In fact the map
is a strongly continuous representation of the additive group R. By Stone's theorem, there exists a (possibly unbounded) self-adjoint operator A such that
This implies there exists a finite positive Borel measure μ on R where
where e0 is the element in F0(R) defined by e0(m) = 1 if m = 0 and 0 otherwise. Because
the theorem holds.
The theorem for locally compact abelian groups
Bochner's theorem for a locally compact Abelian group G, with dual group , says the following:
Theorem For any normalized continuous positive definite function f on G (normalization here means f is 1 at the unit of G), there exists a unique probability measure on such that
i.e. f is the Fourier transform of a unique probability measure μ on . Conversely, the Fourier transform of a probability measure is necessarily a normalized continuous positive definite function f on G. This is in fact a one-to-one correspondence.
The Gelfand-Fourier transform is an isomorphism between the group C*-algebra C*(G) and C0(G^). The theorem is essentially the dual statement for states of the two Abelian C*-algebras.
The proof of the theorem passes through vector states on strongly continuous unitary representations of G (the proof in fact shows every normalized continuous positive definite function must be of this form).
Given a normalized continuous positive definite function f on G, one can construct a strongly continuous unitary representation of G in a natural way: Let F0(G) be the family of complex valued functions on G with finite support, i.e. h(g) = 0 for all but finitely many g. The positive definite kernel K(g1, g2) = f(g1 - g2) induces a (possibly degenerate) inner product on F0(G). Quotiening out degeneracy and taking the completion gives a Hilbert space
whose typical element is an equivalence class [h]. For a fixed g in G, the "shift operator" Ug defined by (Ug)( h ) (g') = h(g' - g), for a representative of [h], is unitary. So the map
is a unitary representations of G on . By continuity of f, it is weakly continuous, therefore strongly continuous. By construction, we have
where [e] is the class of the function that is 1 on the identity of G and zero elsewhere. But by Gelfand-Fourier isomorphism, the vector state on C*(G) is the pull-back of a state on , which is necessarily integration against a probability measure μ. Chasing through the isomorphisms then gives
On the other hand, given a probability measure μ on , the function
is a normalized continuous positive definite function. Continuity of f follows from the dominated convergence theorem. For positive definitness, take a nondegenerate representation of . This extends uniquely to a representation of its multiplier algebra and therefore a strongly continuous unitary representation Ug. As above we have f given by some vector state on Ug
therefore positive-definite.
The two constructions are mutual inverses.
Special cases
For the discrete group Z, Bochner's theorem says a function f on Z with f(0) = 1 is positive definite if and only if there exists a unique probability measure μ on the circle T such that
Similarly, a continuous function f on R with f(0) = 1 is positive definite if and only if there exists a unique probability measure μ on R such that
Applications
In statistics, one often has to specify a covariance matrix, the rows and columns of which correspond to observations of some phenomenon. The observations are made at points in some space. This matrix is to be a function of the positions of the observations and one usually insists that points which are close to one another have high covariance. One usually specifies that the covariance matrix where is a scalar and matrix is n by n with ones down the main diagonal. Element of (corresponding to the correlation between observation i and observation j) is then required to be for some function , and because must be positive definite, must be a positive definite function. Bochner's theorem shows that must be the characteristic function of a symmetric PDF.
See also
References
- Loomis, L. H. (1953), An introduction to abstract harmonic analysis, Van Nostrand
- M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. II, Academic Press, 1975.
- Rudin, W. (1990), Fourier analysis on groups, Wiley-Interscience, ISBN 0-471-52364-X