Jump to content

Percentage

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Coginsys (talk | contribs) at 20:47, 11 October 2012 (Percentage increase and decrease). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a percentage % is a number or ratio as a fraction of 100. It is often denoted using the percent sign, “%”, or the abbreviation “pct.”

For example, 45% (read as “forty-five percent”) is equal to 45/100, or 0.45. A related system which expresses a number as a fraction of 1000 uses the terms "per mil" and "millage". Percentages are used to express how large/small one quantity is, relative to another quantity. The first quantity usually represents a part of, or a change in, the second quantity, which should be greater than zero. For example, an increase of $ 0.15 on a price of $ 2.50 is an increase by a fraction of 0.15/2.50 = 0.06. Expressed as a percentage, this is therefore a 6% increase.

Although percentages are usually used to express numbers between zero and one, any ratio can be expressed as a percentage. For instance, 111% is 1.11 and −0.35% is −0.0035. Although this is technically inaccurate as per the definition of percent, an alternative wording in terms of a change in an observed value is “an increase/decrease by a factor of...””

History

In Ancient Rome, long before the existence of the decimal system, computations were often made in fractions which were multiples of 1/100. For example Augustus levied a tax of 1/100 on goods sold at auction known as centesima rerum venalium. Computation with these fractions were similar to computing percentages. As denominations of money grew in the Middle Ages, computations with a denominator of 100 become more standard and from the late 15th century to the early 16th century it became common for arithmetic texts to include such computations. Many of these texts applied these methods to profit and loss, interest rates, and the Rule of Three. By the 17th century it was standard to quote interest rates in hundredths.[1]

Percent sign

The word is derived from the Latin per centum meaning “by the hundred”.[2] The percent sign evolved by gradual contraction of the phrase per cento. The "per" was often abbreviated as "p." and eventually disappeared entirely. The "cento" was contracted to two circles separated by a horizontal line from which the modern "%" is derived.[3]

Calculations

The percent value is computed by multiplying the numeric value of the ratio by 100. For example, to find the percentage of 50 apples out of 1250 apples, first compute the ratio 50/1250 = .04, and then multiply by 100 to obtain 4%. The percent value can also be found by multiplying first, so in this example the 50 would be multiplied by 100 to give 5000, and this result would be divided by 1250 to give 4%.

To calculate a percentage of a percentage, convert both percentages to fractions of 100, or to decimals, and multiply them. For example, 50% of 40% is:

(50/100) × (40/100) = 0.50 × 0.40 = 0.20 = 20/100 = 20%.

It is not correct to divide by 100 and use the percent sign at the same time. (E.g. 25% = 25/100 = 0.25, not 25% / 100, which actually is (25/100) / 100 = 0.0025. A term such as (100/100)% would also be incorrect, this would be read as (1) percent even if the intent was to say 100%.)

The easy way to calculate addition in percentage (discount 10% + 5%):

For example, if a department store has a "10% + 5% discount," the total discount is not 15% but

Whenever we talk about a percentage, it is important to specify what it is relative to, i.e. what is the total that corresponds to 100%. The following problem illustrates this point.

In a certain college 60% of all students are female, and 10% of all students are computer science majors. If 5% of female students are computer science majors, what percentage of computer science majors are female?

We are asked to compute the ratio of female computer science majors to all computer science majors. We know that 60% of all students are female, and among these 5% are computer science majors, so we conclude that (60/100) × (5/100) = 3/100 or 3% of all students are female computer science majors. Dividing this by the 10% of all students that are computer science majors, we arrive at the answer: 3%/10% = 30/100 or 30% of all computer science majors are female.

This example is closely related to the concept of conditional probability.

Percentage increase and decrease

Say 100 is increased by 20%, the percentage increase or decrease is found by multiplying the given number, 100, by .20. The final amount is then calculated by adding the percentage increase to the given number.

Gerenals rules of percentage increase and decrease are as follows:

  • Percentage increase or decrease is of the initial value. If 100 increases by 20% and then decreases by 20%, the final amount will not be the same.
  • 20% increase of one variable like speed is not the same as 20% increase of a different variables like time.

For interest rates, if an interest rate rises from 10% to 15%, for example, it is typical to say, "The interest rate increased by 5%" — rather than by 50%, which would be correct when measured as a percentage of the initial rate (i.e., from 0.10 to 0.15 is an increase of 50%). Such ambiguity can be avoided by using the term "percentage points". In the previous example, the interest rate "increased by 5 percentage points" from 10% to 15%. If the rate then drops by 5 percentage points, it will return to the initial rate of 10%, as expected.

Change in sign

When the first number is negative and second number is positive, the percentage change from first number to second number is negative. This often occurs in financial statements that changes from a period of loss to period in profit.

Acme Company EBIT
First quarter     (100)
Second quarter     100
Change in profitability (100 - (-100))/(-100) = -200%

In expressing a number as a percentage, the base of the comparison cannot be negative. The First number in the above example is the base of the comparison when it is expressed as a positive amount becomes Loss of 100. The change from First quarter loss to Second quarter profit becomes Percentage change in loss by -200% to turn a profit of 100.

Word and symbol

In British English, percent is sometimes written as two words (per cent, although percentage and percentile are written as one word).[4] In American English, percent is the most common variant[5] (but cf. per mille written as two words).

In the early part of the twentieth century, there was a dotted abbreviation form “per cent.”, as opposed to “per cent”. The form “per cent.” is still in use as a part of the highly formal language found in certain documents like commercial loan agreements (particularly those subject to, or inspired by, common law), as well as in the Hansard transcripts of British Parliamentary proceedings. While the term has been attributed to Latin per centum, this is a pseudo-Latin construction and the term was likely originally adopted from the French pour cent.[citation needed] The concept of considering values as parts of a hundred is originally Greek. The symbol for percent (%) evolved from a symbol abbreviating the Italian per cento. In some other languages, the form prosent is used instead. Some languages use both a word derived from percent and an expression in that language meaning the same thing, e.g. Romanian procent and la sută (thus, 10 % can be read or sometimes written ten for [each] hundred, similarly with the English one out of ten). Other abbreviations are rarer, but sometimes seen.

Grammar and style guides often differ as to how percentages are to be written. For instance, it is commonly suggested that the word percent (or per cent) be spelled out in all texts, as in “1 percent” and not “1%”. Other guides prefer the word to be written out in humanistic texts, but the symbol to be used in scientific texts. Most guides agree that they always be written with a numeral, as in “5 percent” and not “five percent”, the only exception being at the beginning of a sentence: “Ten percent of all writers love style guides.” Decimals are also to be used instead of fractions, as in “3.5 percent of the gain” and not “3 ½ percent of the gain”. It is also widely accepted to use the percent symbol (%) in tabular and graphic material.

In line with common English practice, style guides—such as the The Chicago Manual of Style—generally state that the number and percent sign are written without any space in between.[6] However, the International System of Units and the ISO 31-0 standard require a space.[7][8]

Other uses

The word "percentage" is often a misnomer in the context of sports statistics, when the referenced number is expressed as a decimal proportion, not a percentage: "The Phoenix Suns' Shaquille O'Neal led the NBA with a .609 field goal percentage (FG%) during the 2008-09 season." (O'Neal made 60.9% of his shots, not 0.609%.) Likewise, the winning percentage of a team, the fraction of matches that the club has won, is also usually expressed as a decimal proportion; a team that has a .500 winning percentage has won 50% of their matches. The practice is probably related to the similar way that batting averages are quoted.

As "percent" it is used to describe the steepness of the slope of a road or railway, formula for which is which could also be expressed as the tangent of the angle of inclination times 100. The is the ratio of distances a vehicle would advance vertically and horizontally, respectively, when going up- or downhill, expressed in percent.

Practical applications

See also

References

  1. ^ Smith, D.E. (1951∨1958). History of Mathematics. Vol. 2. Courier Dover Publications. pp. 247–249. ISBN 0-486-20430-8. {{cite book}}: Check date values in: |year= (help)CS1 maint: year (link)
  2. ^ American Heritage Dictionary of the English Language, 3rd ed. (1992) Houghton Mifflin
  3. ^ Smith p. 250
  4. ^ Brians, Paul. "Percent/per cent". Common Errors in English Usage. Washington State University. Retrieved 22 November 2010.
  5. ^ "Percent (per cent)". Oxford Dictionarie. Retrieved 22 November 2010.
  6. ^ "[[The Chicago Manual of Style]]". University of Chicago Press. 2003. Retrieved 5 January 2007. {{cite web}}: URL–wikilink conflict (help)
  7. ^ "The International System of Units" (PDF). International Bureau of Weights and Measures. 2006. Retrieved 6 August 2007.
  8. ^ "ISO 31-0 — Quantities and units – Part 0: General principles". International Organization for Standardization. 22 December 1999. Retrieved 5 January 2007.