Jump to content

Minimal model (physics)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by AHusain314 (talk | contribs) at 06:27, 15 November 2012. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In theoretical physics, the minimal models are a very concrete well-defined type of rational conformal field theory. The individual minimal models are parameterized by two integers p,q that are moreover related for the unitary minimal models.

Classification

These conformal field theories have a finite set of conformal families which close under fusion. However, generally these will not be unitary. Unitarity imposes the further restriction that q and p are related by q=m and p=m+1.

for m = 2, 3, 4, .... and h is one of the values

for r = 1, 2, 3, ..., m−1 and s= 1, 2, 3, ..., r.

The first few minimal models correspond to central charges and dimensions:

  • m = 3: c = 1/2, h = 0, 1/16, 1/2. These 3 representations are related to the Ising model at criticality. The three operators correspond to the identity, spin and energy density respectively.
  • m = 4: c = 7/10. h = 0, 3/80, 1/10, 7/16, 3/5, 3/2. These 6 give the scaling fields of the tri critical Ising model.
  • m = 5: c = 4/5. These give the 10 fields of the 3-state Potts model.
  • m = 6: c = 6/7. These give the 15 fields of the tri critical 3-state Potts model.

References

  • P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, Springer-Verlag, New York, 1997. ISBN 0-387-94785-X.