Jump to content

M/D/1 queue

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Gareth Jones (talk | contribs) at 22:18, 5 December 2012 (add delay section and model description). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation.[1] Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory.[2][3]

Model definition

An M/D/1 queue is a stochastic process whose state space is the set {0,1,2,3,...} where the value corresponds to the number of customers in the system, including any currently in service.

  • Arrivals occur at rate λ according to a Poisson process and move the process from state i to i + 1.
  • Service times are deterministic time D (serving at rate μ = 1/D).
  • A single server serves customers one at a time from the front of the queue, according to a first-come, first-served discipline. When the service is complete the customer leaves the queue and the number of customers in the system reduces by one.
  • The buffer is of infinite size, so there is no limit on the number of customers it can contain.

Delay

The mean delay in an M/D/1 queue with arrival rate a Poisson process is[4]

References

  1. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1214/aoms/1177728975, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1214/aoms/1177728975 instead.
  2. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/s11134-009-9147-4, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/s11134-009-9147-4 instead.
  3. ^ "The theory of probabilities and telephone conversations" (PDF). Nyt Tidsskrift for Matematik B. 20: 33–39. 1909.
  4. ^ Cahn, Robert S. (1998). Wide Area Network Design:Concepts and Tools for Optimization. Morgan Kaufmann. p. 329. ISBN 1558604588.