Jump to content

Cold dark matter

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Cmanser (talk | contribs) at 23:51, 16 December 2012 (Composition: Point to article not disambiguation). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Cold dark matter (or CDM) is a hypothetical form of matter that interacts very weakly with electromagnetic radiation (dark) and most of whose particles move slowly compared to the speed of light (cold). It is believed that approximately 80% of matter in the Universe is dark matter, with only a small fraction being the ordinary "baryonic" matter that composes stars and planets. As of 2006, most cosmologists favor the cold dark matter theory as a description of how the Universe went from a smooth initial state at early times (as shown by the cosmic microwave background radiation) to the lumpy distribution of galaxies and their clusters we see today — the large-scale structure of the Universe. The theory sees the role dwarf galaxies played crucial, as they are thought to be natural building blocks that form larger structures, created by small-scale density fluctuations in the early Universe.[1] The theory was originally published in 1984 by United States physicists Joel R. Primack, George Blumenthal, and Sandra Moore Faber with UK scientist Martin Rees.

In the cold dark matter theory, structure grows hierarchically, with small objects collapsing under their self-gravity first and merging in a continuous hierarchy to form more and more larger and more massive objects. In the hot dark matter paradigm, popular in the early 1980s, structure does not form hierarchically (bottom-up), but rather forms by fragmentation (top-down), with the largest superclusters forming first in flat pancake-like sheets and subsequently fragmenting into smaller pieces like our galaxy the Milky Way. The predictions of hot dark matter disagree with observations of large-scale structures, whereas the cold dark matter paradigm is in general agreement with the observations.

Composition

Dark matter is detected through its gravitational interactions with ordinary matter and radiation. As such, it is very difficult to determine what the constituents of cold dark matter are. The candidates fall roughly into three categories:

  • Axions are very light particles with a specific type of self-interaction that makes them a suitable CDM candidate.[2][3] Axions have the theoretical advantage that their existence solves the Strong CP problem in QCD, but have not been detected.
  • WIMPs: Dark matter is composed of Weakly Interacting Massive Particles. There is no currently known particle with the required properties, but many extensions of the standard model of particle physics predict such particles. The search for WIMPs involves attempts at direct detection by highly sensitive detectors, as well as attempts at production by particle accelerators. WIMPs are generally regarded as the most promising dark matter candidates.[5][7][9] The DAMA/NaI experiment and its successor DAMA/LIBRA have claimed to directly detect dark matter particles passing through the Earth, but many scientists remain skeptical, as null results from similar experiments seem incompatible with the DAMA results.

Challenges

Several discrepancies between the predictions of the particle cold dark matter paradigm and observations of galaxies and their clustering have arisen:

  • The cuspy halo problem: cold particle dark matter predicts that the density distribution of DM halos be much more peaked than what is observed in galaxies by investigating their rotation curve.[10]
  • The missing satellites problem: cold particle dark matter predicts larger numbers of small dwarf galaxies (about one thousandth the mass of the Milky Way) than are observed.[11]

All of these problems have a number of proposed solutions, and it remains unclear how serious a challenge they represent for the CDM paradigm.[12]

References

  1. ^ Battinelli, P. (2005-10-06). "The C star population of DDO 190: 1. Introduction" (PDF). Astronomy & Astrophysics. p. 1. doi:10.1051/0004-6361:20052829. Archived from the original (HTML) on 2005-10-06. Retrieved 2012-08-19. Dwarf galaxies play a crucial role in the CDM scenario for galaxy formation, having been suggested to be the natural building blocks from which larger structures are built up by merging processes. In this scenario dwarf galaxies are formed from small-scale density fluctuations in the primeval Universe. {{cite web}}: More than one of |author= and |last= specified (help); Unknown parameter |coauthors= ignored (|author= suggested) (help); line feed character in |quote= at position 172 (help)
  2. ^ e.g. M. Turner (2010). "Axions 2010 Workshop". U. Florida, Gainesville, USA.
  3. ^ e.g. Pierre Sikivie (2008). "Axion Cosmology". Lect. Notes Phys. 741, 19-50.
  4. ^ Carr, B. J. (May 2010). "New cosmological constraints on primordial black holes". Physical Review D. 81: 104019. arXiv:0912.5297. Bibcode:2010PhRvD..81j4019C. doi:10.1103/PhysRevD.81.104019. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. ^ a b Peter, A. H. G. "Dark Matter: A Brief Review". arXiv:1201.3942. Bibcode:2012arXiv1201.3942P. {{cite journal}}: Cite journal requires |journal= (help)
  6. ^ Bertone, Gianfranco; Hooper, Dan; Silk, Joseph (January 2005). "Particle dark matter: evidence, candidates and constraints". Physics Reports. 405: 279–390. arXiv:hep-ph/0404175. Bibcode:2005PhR...405..279B. doi:10.1016/j.physrep.2004.08.031.
  7. ^ a b Katherine Garrett and Gintaras Dūda, "Dark Matter: A Primer," Advances in Astronomy, vol. 2011, Article ID 968283, 22 pages, 2011. doi:10.1155/2011/968283. p. 3: "MACHOs can only account for a very small percentage of the nonluminous mass in our galaxy, revealing that most dark matter cannot be strongly concentrated or exist in the form of baryonic astrophysical objects. Although microlensing surveys rule out baryonic objects like brown dwarfs, black holes, and neutron stars in our galactic halo, can other forms of baryonic matter make up the bulk of dark matter? The answer, surprisingly, is no..."
  8. ^ Gianfranco Bertone, "The moment of truth for WIMP dark matter," Nature 468, 389–393 (18 November 2010)
  9. ^ a b Olive, Keith A. 2003. "TASI Lectures on Dark Matter." Physics 2003, no. January: 54. http://arxiv.org/abs/astro-ph/0301505, p. 21
  10. ^ Gentile, G.; P., Salucci (2004). "The cored distribution of dark matter in spiral galaxies". Monthly Notices. 351: 903–922.
  11. ^ Anatoly Klypin, Andrey V. Kravtsov, Octavio Valenzuela and Francisco Prada, "Where Are the Missing Galactic Satellites?" ApJ 522 82 (1999) doi:10.1086/307643 http://iopscience.iop.org/0004-637X/522/1/82/
  12. ^ Kroupa, P.; Famaey, B.; de Boer, Klaas S.; Dabringhausen, Joerg; Pawlowski, Marcel; Boily, Christian; Jerjen, Helmut; Forbes, Duncan; Hensler, Gerhard (2010). "Local-Group tests of dark-matter Concordance Cosmology: Towards a new paradigm for structure formation". Astronomy and Astrophysics. 523: 32–54. arXiv:1006.1647.

See also

Further reading