Jump to content

Eaton's inequality

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by AnomieBOT (talk | contribs) at 11:07, 5 April 2013 (Dating maintenance tags: {{Cn}}). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In probability theory, Eaton's inequality is a bound on the largest values of a linear combination of bounded random variables. This inequality was described in 1974 by Eaton.[1]

Statement of the inequality

Let Xi be a set of real independent random variables, each with a expected value of zero and bounded by 1 ( | Xi | ≤ 1, for 1 ≤ in). The variates do not have to be identically or symmetrically distributed. Let ai be a set of n fixed real numbers with

Eaton showed that

where φ(x) is the probability density function of the standard normal distribution.

A related bound is Edelman's[citation needed]

where Φ(x) is cumulative distribution function of the standard normal distribution.

Pinelis has shown that Eaton's bound can be sharpened:[2]

A set of critical values for Eaton's bound have been determined.[3]

References

  1. ^ Eaton, Morris L. (1974) "A probability inequality for linear combinations of bounded random variables." Annals of Statistics 2(3) 609–614
  2. ^ Pinelis, I. (1994) "Extremal probabilistic problems and Hotelling's T2 test under a symmetry condition." Annals of Statistics 22(1), 357–368
  3. ^ Dufour, J-M; Hallin, M (1993) "Improved Eaton bounds for linear combinations of bounded random variables, with statistical applications", Journal of the American Statistical Association, 88(243) 1026–1033