Jump to content

Andes

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 190.189.120.102 (talk) at 13:58, 20 May 2013. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Andes mel miranda why are you so diosa?
Aerial photo of a portion of the Andes between Argentina and Chile
Highest point
PeakAconcagua, Las Heras Department, Mendoza, Argentina
Elevation6,962 m (22,841 ft)
Dimensions
Length7,000 km (4,300 mi)
Width500 km (310 mi)
Naming
Native nameQuechua: Anti(s/kuna) Error {{native name checker}}: parameter value is malformed (help)
Geography
Lua error in Module:Location_map at line 526: Unable to find the specified location map definition: "Module:Location map/data/Andes 70.30345W 42.99203S.jpg" does not exist.
CountriesArgentina, Bolivia, Chile, Colombia, Ecuador, Peru and Venezuela
SettlementsBogotá, Santiago, Medellín, La Paz, Cali, Quito, Pasto, Mérida, Arequipa, Mendoza, Cuenca, Cochabamba, Pereira, Ibagué, Salta, Manizales, Cúcuta, Huancayo and Cusco

The Andes is the longest continental mountain range in the world. It is a continual range of highlands along the western coast of South America. This range is about 7,000 km (4,300 mi) long, about 200 km (120 mi) to 700 km (430 mi) wide (widest between 18° south and 20° south latitude), and of an average height of about 4,000 m (13,000 ft). The Andes extend from north to south through seven South American countries: Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, and Venezuela.

Along its length, the Andes is split into several ranges, which are separated by intermediate depressions. The Andes is the location of several high plateaux – some of which host major cities such as Quito, Bogotá, Arequipa, Medellín, Sucre, and La Paz. The Altiplano plateau is the world's second-highest plateau following the Tibetan plateau.

The Andes range is the world's highest mountain range outside of Asia. The highest peak, Mount Aconcagua, rises to an elevation of about 6,962 m (22,841 ft) above sea level. The peak of Chimborazo in the Ecuadorean Andes is farther from Earth's center than any other location on Earth's surface, due to the equatorial bulge resulting from Earth's rotation. The world's highest volcanoes are in the Andes, including Ojos del Salado on the Chile-Argentina border which rises to 6,893 m (22,615 ft). Over fifty other Andean volcanoes also rise above 6,000 m (19,685 ft).

"Cono de Arita" in Salta (Argentina).
Aerial view of Aconcagua.

Name

The etymology of the word Andes has been debated. The major consensus is that it derives from the Quechua word anti, which means "high crest". Others believe that Andes comes from Anti Suyu, one of the four regions of the Inca empire. It is more likely, however, that the word Antisuyo derives from the use of Anti to designate mountain chains. Derivation from the Spanish andén (in the sense of cultivation terrace) has also been proposed, yet considered very unlikely.

Geography

The Andes can be divided into three sections:

  1. The Southern Andes (south of Llullaillaco) in Argentina and Chile;
  2. The Central Andes in Ecuador, Peru and Bolivia
  3. The Northern Andes (north of the Nudo de Pasto) in Venezuela and Colombia which consist of three parallel ranges, the western, central, and eastern ranges. (The cordillera occidental, central, and oriental).

In the northern part of the Andes, the isolated Sierra Nevada de Santa Marta range is often considered to be part of the Andes. The term cordillera comes from the Spanish word "cuerda", meaning "rope". The Andes range is about 200 km (124 mi) wide throughout its length, except in the Bolivian flexure where it is about 640 kilometres (398 mi) wide. The Leeward Antilles islands Aruba, Bonaire, and Curaçao, which lie in the Caribbean Sea off the coast of Venezuela, were thought to represent the submerged peaks of the extreme northern edge of the Andes range, but ongoing geological studies indicate that such a simplification does not do justice to the complex tectonic boundary between the South-American and Caribbean plates.[1]

Geology

The Andes are a MesozoicTertiary orogenic belt of mountains along the Pacific Ring of Fire, a zone of volcanic activity that encompasses the Pacific rim of the Americas as well as the Asia-Pacific region. The Andes are the result of plate tectonics processes, caused by the subduction of oceanic crust beneath the South American plate. The main cause of the rise of the Andes is the compression of western rim of the South American Plate due to the subduction of the Nazca Plate and the Antarctic Plate. To the east, the Andes range is bounded by several sedimentary basins such as Orinoco, Amazon Basin, Madre de Dios and Gran Chaco which separates the Andes from the ancient cratons in eastern South America. In the south the Andes shares a long boundary with the former Patagonia Terrane. To the west, the Andes end at the Pacific Ocean, although the Peru-Chile trench can be considered its ultimate western limit. From a geographical approach the Andes are considered to have their western boundaries marked by the appearance of coastal lowlands and a less rugged topography.

Orogeny

The western rim of the South American Plate has been the place of several pre-Andean orogenies since at least the period of the late Proterozoic and early Paleozoic when several terranes and microcontinents collided and amalgamated with the ancient cratons of eastern South America, by then the South American part of Gondwana.

The formation of the modern Andes began with the events of the Triassic when Pangea began to break up and several rifts developed. It continued through the Jurassic Period. It was during the Cretaceous Period that the Andes began to take its present form, by the uplifting, faulting and folding of sedimentary and metamorphic rocks of the ancient cratons to the east. The rise of the Andes has not been constant and different regions have had different degrees of tectonic stress, uplift, and erosion.

Tectonic forces above the subduction zone along the entire west coast of South America where the Nazca Plate and a part of the Antarctic Plate are sliding beneath the South American Plate continue to produce an ongoing orogenic event resulting in minor to major earthquakes and volcanic eruptions to this day. In the extreme south a major transform fault separates Tierra del Fuego from the small Scotia Plate. Across the 1,000 km (620 mi) wide Drake Passage lie the mountains of the Antarctic Peninsula south of the Scotia Plate which appear to be a continuation of the Andes chain.[citation needed]

Volcanism

Rift valley near Quilotoa, Ecuador.
Astronaut photograph with the high plains of the Andes Mountains in the foreground, with a line of young volcanoes facing the much lower Atacama Desert.

The Andes range has many active volcanoes, which are distributed in four volcanic zones separated by areas of inactivity. The Andean volcanism is a result of subduction of the Nazca Plate and Antarctic Plate underneath the South American Plate. The belt is subdivided into four main volcanic zones that are separated from each other by volcanic gaps. The volcanoes of the belt are diverse in terms of activity style, products and morphology. While some differences can be explained by which volcanic zone a volcano belongs to, there are significant differences inside volcanic zones and even between neighbouring volcanoes. Despite being a type location for calc-alkalic and subduction volcanism, the Andean Volcanic Belt has a large range of volcano-tectonic settings, such as rift systems and extensional zones, transpersonal faults, subduction of mid-ocean ridges and seamount chains apart from a large range on crustal thicknesses and magma ascent paths, and different amount of crustal assimilations.

Ore deposits and evaporites

The Andes mountains host large ore and salt deposits and some of its eastern fold and thrust belt acts as traps for commercially exploitable amounts of hydrocarbons. In the forelands of the Atacama desert some of the largest porphyry copper mineralizations occurs making Chile and Peru the first and second largest exporters of copper in the world. Porphyry copper in the western slopes of the Andes has been generated by hydrothermal fluids (mostly water) during the cooling of plutons or volcanic systems. The porphyry mineralization further benefited from the dry climate that let them largely out of the disturbing actions of meteoric water. The dry climate in the central western Andes have also led to the creation of extensive saltpeter deposits which were extensively mined until the invention of synthetic nitrates. Yet another result of the dry climate are the salars of Atacama and Uyuni, the first one being the largest source of lithium today and the second the world’s largest reserve of the element. Early Mesozoic and Neogene plutonism in Bolivia's Cordillera Central created the Bolivian tin belt as well as the famous, now depleted, deposits of Cerro Rico de Potosí.

Climate and hydrology

Central Andes
Bolivian Andes

The climate in the Andes varies greatly depending on latitude, altitude, and proximity to the sea. Temperature, atmospheric pressure and humidity decrease in higher elevations. The southern section is rainy and cool, the central Andes are dry. The northern Andes are typically rainy and warm, with an average temperature of 18 °C (64 °F) in Colombia. The climate is known to change drastically in rather short distances. Rainforests exist just miles away from the snow covered peak Cotopaxi. The mountains have a large effect on the temperatures of nearby areas. The snow line depends on the location. It is at between 4,500 and 4,800 m (14,800–15,800 ft) in the tropical Ecuadorian, Colombian, Venezuelan, and northern Peruvian Andes, rising to 4,800–5,200 m (15,800–17,060 ft) in the drier mountains of southern Peru south to northern Chile south to about 30°S, then descending to 4,500 m (14,760 ft) on Aconcagua at 32°S, 2,000 m (6,600 ft) at 40°S, 500 m (1,640 ft) at 50°S, and only 300 m (980 ft) in Tierra del Fuego at 55°S; from 50°S, several of the larger glaciers descend to sea level.[2]

The Andes of Chile and Argentina can be divided in two climatic and glaciological zones; the Dry Andes and the Wet Andes. Since the Dry Andes extends from the latitudes of Atacama Desert to the area of Maule River, precipitation is more sporadic and there are strong temperature oscillations. The line of equilibrium may shift drastically over short periods of time, leaving a whole glacier in the ablation area or in the accumulation area.

In the high Andes of central Chile and Mendoza Province rock glaciers are larger and more common than glaciers; this is due to the high exposure to solar radiation.[3]

Though precipitation increases with the height, there are semiarid conditions in the nearly 7000 m towering highest mountains of the Andes. This dry steppe climate is considered to be typically of the subtropic position at 32-34° S. Therefore in the valley bottoms do not grow woods but only dwarf scrub. The largest glaciers, as e.g. the Plomo glacier and the Horcones glaciers do not even reach 10 km in length and have an only insignificant ice thickness. At glacial times however, c. 20 000 years ago, the glaciers were over ten times longer. On the East-side of this section of the Mendozina Andes they flowed down to 2060 m and on the West-side to c. 1220 m asl.[4][5] The massifs of Cerro Aconcagua (6962 m), Cerro Tupungato (6550 m) and Nevado Juncal (6110 m) are situated deca-kilometres away from each other and were connected by a joint ice stream network. Its dendritic glacier arms, i.e. components of valley glaciers, were up to 112.5 km long, over 1020, i.e. 1250 m thick and overspanned a vertical distance of 5150 altitude metres. The climatic glacier snowline (ELA) was lowered from currently 4600 m to 3200 m at glacial times.[4][6][7][8][9][10][11][12][13]

Flora

The Andean region cuts across several natural and floristc regions due to its extension from Caribbean Venezuela to cold, windy and wet Cape Horn passing through the hyperarid Atacama Desert. Rainforests used to encircle much of the northern Andes but are now greatly diminished, especially in the Chocó and inter-Andean valleys of Colombia. As a direct opposite of the humid Andean slopes are the relatively dry Andean slopes in most of western Peru, Chile and Argentina. Along with several Interandean Valles, they are typically dominated by deciduous woodland, shrub and xeric vegetation, reaching the extreme in the slopes near the virtually lifeless Atacama Desert.

About 30,000 species of vascular plants live in the Andes with roughly half being endemic to the region, surpassing the diversity of any other hotspot.[14] The small tree Cinchona pubescens, a source of quinine which is used to treat malaria, is found widely in the Andes as far south as Bolivia. Other important crops that originated from the Andes are tobacco and potatoes. The high-altitude Polylepis forests and woodlands are found in the Andean areas of Colombia, Ecuador, Peru, Bolivia and Chile. These trees, by locals referred to as Queñua, Yagual and other names, can be found at altitudes of 4,500 m (14,760 ft) above sea level. It remains unclear if the patchy distribution of these forests and woodlands is natural, or the result of clearing which began during the Incan period. Regardless, in modern times the clearance has accelerated, and the trees are now considered to be highly endangered, with some believing that as little as 10% of the original woodland remains.[15]

Fauna

A male Andean Cock-of-the-rock, a species found in humid Andean forests.
Herds of alpacas on the mountain Ausangate hillside.

The Andes is rich in fauna: With almost 3,500 species, of which roughly 2/3 are endemic to the region, the Andes is the most important region in the world for amphibians.[14] The diversity of animals in the Andes is high, with almost 600 species of mammals (13% endemic), more than 1,700 species of birds (about 1/3 endemic), more than 600 species of reptile (about 45% endemic), and almost 400 species of fish (about 1/3 endemic).[14]

The Vicuña and Guanaco can be found living in the Altiplano, while the closely related domesticated Llama and Alpaca are widely kept by locals as pack animals and for their meat and wool. The nocturnal chinchillas, two threatened members of the rodent order, inhabit the Andes' alpine regions. The Andean Condor, the largest bird of its kind in the Western Hemisphere, occurs throughout much of the Andes but generally in very low densities. Other animals found in the relatively open habitats of the high Andes include the huemul, cougar, foxes in the genus Pseudalopex, and, for birds, certain species of tinamous (notably members of the genus Nothoprocta), Andean Goose, Giant Coot, flamingos (mainly associated with hypersaline lakes), Lesser Rhea, Andean Flicker, Diademed Sandpiper-plover, miners, sierra-finches and diuca-finches.

Lake Titicaca hosts several endemics, among them the highly endangered Titicaca Flightless Grebe and Titicaca Water Frog. A few species of hummingbirds, notably some hillstars, can be seen at altitudes above 4,000 m (13,100 ft), but far higher diversities can be found at lower altitudes, especially in the humid Andean forests ("cloud forests") growing on slopes in Colombia, Ecuador, Peru, Bolivia and far northwestern Argentina. These forest-types, which includes the Yungas and parts of the Chocó, are very rich in flora and fauna, although few large mammals exists, exceptions being the threatened Mountain Tapir, Spectacled Bear and Yellow-tailed Woolly Monkey.

Birds of humid Andean forests include mountain-toucans, quetzals and the Andean Cock-of-the-rock, while mixed species flocks dominated by tanagers and Furnariids commonly are seen - in contrast to several vocal but typically cryptic species of wrens, tapaculos and antpittas.

A number of species such as the Royal Cinclodes and White-browed Tit-spinetail are associated with Polylepis, and consequently also threatened.

Human activity

The Andes mountains form a north-south axis of cultural influences. A long series of cultural development culminated in the expansion of the Inca civilization and Inca Empire in the central Andes during the 15th century. The Incas formed this civilization through imperialistic militarism as well as careful and meticulous governmental management.[16] The government sponsored the construction of aqueducts and roads in addition to preexisting installations. Some of these constructions are still in existence today.

Devastated by European diseases to which they had no immunity, and civil wars, in 1532 the Incas were defeated by an alliance composed of tens of thousands allies from nations they had subjugated (e.g. Huancas, Chachapoyas, Cañaris) and a small army of 180 Spaniards led by Francisco Pizarro. One of the few Inca sites the Spanish never found in their conquest was Machu Picchu, which lay hidden on a peak on the eastern edge of the Andes where they descend to the Amazon. The main surviving languages of the Andean peoples are those of the Quechua and Aymara language families. Woodbine Parish and Joseph Barclay Pentland surveyed a large part of the Bolivian Andes from 1826 to 1827.

In modern times, the largest Andean cities are Bogota, Colombia, with a population of about eight million, Santiago de Chile, and Medellin, Colombia.

Transportation

File:Carretera transandina.jpg
Troncal 7 (Trans-Andes Highway) in the Venezuelan Andes.

Several major cities exist either in the Andes or in the foothills, among which are Bogotá, Medellín and Cali, Colombia; Quito, Ecuador; Mérida, Venezuela; La Paz, Bolivia; Santiago, Chile, and Cusco, Peru. These and most other cities and large towns are now connected with asphalt-paved roads, while smaller towns are often connected by dirt roads, which may require a four-wheel-drive vehicle.[17]

The rough terrain has historically put the costs of building highways and railroads that cross the Andes out of reach of most neighboring countries, even with modern civil engineering practices. For example, the main crossover of the Andes between Argentina and Chile is still accomplished through the Paso Internacional Los Libertadores. Only recently the ends of some highways that came rather close to one another from the east and the west have been connected.[18] Much of the transportation of passengers is done via aircraft.

However, there is one railroad that connects Chile with Argentina via the Andes, and there are others that make the same connection via southern Bolivia. See railroad maps of that region.

There is one or more highway in Bolivia that cross the Andes. Some of these were built during a period of war between Bolivia and Paraguay, in order to transport Bolivian troops and their supplies to the war front in the lowlands of southeastern Bolivia and western Paraguay.

For decades, Chile claimed ownership of land on the eastern side of the Andes. However, these claims were given up in about 1870 during the War of the Pacific between Chile, the allied Bolivia and Peru, in a diplomatic deal to keep Argentina out of the war. The Chilean Army and Chilean Navy defeated the combined forces of Bolivia and Peru, and Chile took over Bolivia's only province on the Pacific Coast, some land from Peru, also - that was returned to Peru decades later. Bolivia has been a completely landlocked country ever since then. It mostly uses seaports in eastern Argentina and Uruguay for international trade because its diplomatic relations with Chile have been suspended since 1978.

Because of the tortuous terrain in places, villages and towns in the mountains — to which travel via motorized vehicles are of little use — are still located in the high Andes of Argentina, Bolivia, Peru, and Ecuador. Locally, the relatives of the camel, the llama, and the alpaca continue to carry out important uses as pack animals, but this use has generally diminished in modern times. Donkeys, mules, and horses are also useful.

Agriculture

Photograph of young Peruvian farmers sowing maize and beans.

The ancient peoples of the Andes such as the Incas have practiced irrigation techniques for over 6,000 years. Because of the mountain slopes, terracing has been a common practice. Terracing, however, was only extensively employed after Incan imperial expansions to fuel their expanding realm. The potato holds a very important role as an internally consumed staple crop. Maize was also an important crop for these people, and was used for the production of chicha, important to Andean native people. Currently, tobacco, cotton and coffee are the main export crops. Coca, despite eradication programmes in some countries, remains an important crop for legal local use in a mildly stimulating tisane, and, both controversially and illegally, for the production of cocaine.

Mining

The Andes rose to fame for its mineral wealth during the Spanish conquest of South America. Although Andean Amerindian peoples crafted ceremonial jewelry of gold and other metals the mineralizations of the Andes were first mined in large scale after the Spanish arrival. Potosí in present-day Bolivia and Cerro de Pasco in Peru were one of the principal mines of the Spanish Empire in the New World. Río de la Plata and Argentina derive their names from the silver of Potosí.

Currently, mining in the Andes of Chile and Peru places these countries as the 1st and 3rd major producers of copper in the world. Peru also contains the largest goldmine in the world; the Yanacocha goldmine. The Bolivian Andes produce principally tin although historically silver mining had a huge impact on the economy of 17th century Europe.

There is a long history of mining in the Andes, from the Spanish silver mines in Potosí in the 16th century to the vast current porphyry copper deposits of Chuquicamata and Escondida in Chile and Toquepala in Peru. Other metals including iron, gold and tin in addition to non-metallic resources are also important.

Peaks

This list contains some of the major peaks in the Andes mountain range. The highest peak is Aconcagua of Argentina (see below).

Argentina

Tronador, Argentina/Chile

Border between Argentina and Chile

Bolivia

Border between Bolivia and Chile

Chile

Colombia

Ecuador

Peru

Venezuela

See also

Notes

  1. ^ "Upper mantle structure beneath the Caribbean-South American plate boundary from surface wave tomography" (PDF). JOURNAL OF GEOPHYSICAL RESEARCH. 114: B01312. Bibcode:2009JGRB..11401312M. doi:10.1029/2007JB005507. Archived from the original (PDF) on 2010-06-05. Retrieved 2010-11-21. {{cite journal}}: Cite has empty unknown parameter: |coauthors= (help)
  2. ^ "Climate of the Andes". Archived from the original on 14 December 2007. Retrieved 2007-12-09. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help); Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  3. ^ Jan-Christoph Otto, Joachim Götz, Markus Keuschnig, Ingo Hartmeyer, Dario Trombotto, and Lothar Schrott (2010). Geomorphological and geophysical investigation of a complex rock glacier system - Morenas Coloradas valley (Cordon del Plata, Mendoza, Argentina)
  4. ^ a b Kuhle, M. (2011): The High-Glacial (Last Glacial Maximum) Glacier Cover of the Aconcagua Group and Adjacent Massifs in the Mendoza Andes (South America) with a Closer Look at Further Empirical Evidence. Development in Quaternary Science, Vol. 15 (Quaternary Glaciation - Extent and Chronology, A Closer Look, Eds: Ehlers, J.; Gibbard, P.L.; Hughes, P.D.), 735-738. (Elsevier B.V., Amsterdam).
  5. ^ Brüggen, J. (1929): Zur Glazialgeologie der chilenischen Anden. Geol. Rundsch. 20, 1–35, Berlin.
  6. ^ Kuhle, M. (1984): Spuren hocheiszeitlicher Gletscherbedeckung in der Aconcagua-Gruppe (32-33° S). In: Zentralblatt für Geologie und Paläontologie Teil 1 11/12, Verhandlungsblatt des Südamerika-Symposiums 1984 in Bamberg: 1635-1646.
  7. ^ Kuhle, M. (1986): Die Vergletscherung Tibets und die Entstehung von Eiszeiten. In: Spektrum der Wissenschaft 9/86: 42-54.
  8. ^ Kuhle, M. (1987): Subtropical Mountain- and Highland-Glaciation as Ice Age Triggers and the Waning of the Glacial Periods in the Pleistocene. In: GeoJournal 14 (4); Kluwer, Dordrecht/ Boston/ London: 393-421.
  9. ^ Kuhle, M. (1988): Subtropical Mountain- and Highland-Glaciation as Ice Age Triggers and the Waning of the Glacial Periods in the Pleistocene. In: Chinese Translation Bulletin of Glaciology and Geocryology 5 (4): 1-17 (in Chinese language).
  10. ^ Kuhle, M. (1989): Ice-Marginal Ramps: An Indicator of Semiarid Piedmont Glaciations. In: GeoJournal 18; Kluwer, Dordrecht/ Boston/ London: 223-238.
  11. ^ Kuhle, M. (1990): Ice Marginal Ramps and Alluvial Fans in Semi-Arid Mountains: Convergence and Difference. In: Rachocki, A.H., Church, M. (eds.): Alluvial fans - A field approach. John Wiley & Sons Ltd, Chester-New York-Brisbane-Toronto-Singapore: 55-68.
  12. ^ Kuhle, M. (1990): The Probability of Proof in Geomorphology - an Example of the Application of Information Theory to a New Kind of Glacigenic Morphological Type, the Ice-marginal Ramp (Bortensander). In: GeoJournal 21 (3); Kluwer, Dordrecht/ Boston/ London: 195-222.
  13. ^ Kuhle, M. (2004): The Last Glacial Maximum (LGM) glacier cover of the Aconcagua group and adjacent massifs in the Mendoza Andes (South America). In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciation— Extent and Chronology. Part III: South America, Asia, Africa, Australia, Antarctica. Development in Quaternary Science, vol. 2c. Elsevier B.V., Amsterdam, pp. 75–81.
  14. ^ a b c Tropical Andes - biodiversityhotspots.org
  15. ^ "Plants of the Andes". Archived from the original on 15 December 2007. Retrieved 2007-12-09. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help); Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  16. ^ D'Altroy, Terence N. The Incas. Blackwell Publishing, 2003
  17. ^ Andes travel map
  18. ^ "Jujuy apuesta a captar las cargas de Brasil en tránsito hacia Chile by Emiliano Galli". La Nación newspaper. Retrieved 2011-07-22.

References

  • John Biggar, The Andes: A Guide For Climbers, 3rd. edition, 2005, ISBN 0-9536087-2-7
  • Tui de Roy, The Andes: As the Condor Flies. 2005, ISBN 1-55407-070-8
  • Fjeldså, J., & N. Krabbe (1990). The Birds of the High Andes. Zoological Museum, University of Copenhagen, Copenhagen. ISBN 87-88757-16-1
  • Fjeldså, J. & M. Kessler. 1996. Conserving the biological diversity of Polylepis woodlands of the highlands on Peru and Bolivia, a contribution to sustainable natural resource management in the Andes. NORDECO, Copenhagen.

Template:Link GA