Jump to content

Optogenetics

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Prometheus~enwiki (talk | contribs) at 06:53, 13 June 2013 (Added link to page "Karl Deisseroth"). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Optogenetics is a neuromodulation technique employed in neuroscience that uses a combination of techniques from optics and genetics to control the activity of individual neurons in living tissue—even within freely-moving animals—and to precisely measure the effects of those manipulations in real-time.[1] The earliest approaches (like those developed and applied by Gero Miesenböck[2][3]), now Waynflete Professor of Physiology at the University of Oxford,[4] and Richard Kramer and Ehud Isacoff at the University of California, Berkeley) conferred light sensitivity but were never reported to be useful by other laboratories due to the multiple components these approaches required. A distinct single-component approach involving microbial opsin genes introduced in 2005 turned out to be widely applied as described below. Optogenetics is known for the high spatial and temporal resolution that it provides in altering the activity of specific types of neurons within defined brain areas to control a subject's behavior.

In 2010 Karl Deisseroth at Stanford University was awarded the inaugural HFSP Nakasone Award "for his pioneering work on the development of optogenetic methods for studying the function of neuronal networks underlying behavior."

In 2010, optogenetics was chosen as the Method of the Year across all fields of science and engineering by the interdisciplinary research journal Nature Methods (Primer on Optogenetics,[5] Editorial[6] Commentary[7]). At the same time, optogenetics was highlighted in the article on “Breakthroughs of the Decade” in the scientific research journal Science Breakthrough of the Decade;[8] these journals also referenced recent public-access general-interest video Method of the year video and textual SciAm summaries of optogenetics.

In 2012 Gero Miesenböck was awarded the InBev-Baillet Latour International Health Prize for "pioneering optogenetic approaches to manipulate neuronal activity and to control animal behaviour."

History

The "far-fetched" possibility of using light for selectively controlling precise neural activity (action potential) patterns within subtypes of cells in the brain was articulated by Francis Crick in his Kuffler Lectures at the University of California in San Diego in 1999.[9] An early use of light to activate neurons was carried out by Richard Fork[10] and later Rafael Yuste,[11] who demonstrated laser activation of neurons within intact tissue, although not in a genetically-targeted manner. The earliest genetically targeted method, which used light to control genetically-sensitised neurons, was reported in January 2002 by Boris Zemelman and Gero Miesenböck, who employed Drosophila rhodopsin photoreceptors for controlling neural activity in cultured mammalian neurons.[12] In April 2005, Susana Lima and Miesenböck reported the first use of genetically-targeted photostimulation to control the behaviour of an animal.[13] They showed that photostimulation of genetically circumscribed groups of neurons, such as those of the dopaminergic system, elicited characteristic behavioural changes in fruit flies. Beginning in 2004, the Kramer and Isacoff groups developed organic photoswitches or "caged" compounds that could interact with genetically-introduced ion channels.[14][15] However, these earlier approaches were not applied outside the original laboratories, likely because of technical challenges in delivering the multiple component parts required.

In August 2005, Karl Deisseroth's laboratory in the Bioengineering Department at Stanford including graduate students Ed Boyden and Feng Zhang (both now at MIT) published the first demonstration of a single-component optogenetic system, beginning in cultured mammalian neurons.[16][17] using channelrhodopsin, a single-component light-activated cation channel from unicellular algae), whose molecular identity had been confimed in November 2003.[18] Channelrhodopsin (ChR) allowed millisecond-scale temporal control in mammals, required only one gene to be expressed in order to work, and responded to visible-spectrum light with a chromophore retinal that was already present and supplied to the ChR by the vertebrate tissues.[16][17] The surprising experimental utility of this single-component "microbial opsin" approach was quickly proven with many additional microbial opsin classes and in a variety of animal models ranging from behaving mammals to classical model organisms such as flies, worms, and zebrafish. The "optogenetic" terminology was coined in 2006,[1] and since 2005, hundreds of laboratories around the world have employed microbial opsins to study complex biological systems (references below).

Description

Fig 1. Channelrhodopsin-2 (ChR2) induces temporally precise blue light-driven activity in rat prelimbic prefrontal cortical neurons. a) In vitro schematic (left) showing blue light delivery and whole-cell patch-clamp recording of light-evoked activity from a fluorescent CaMKllα::ChR2-EYFP expressing pyramidal neuron (right) in an acute brain slice. b) In vivo schematic (left) showing blue light (473 nm) delivery and single-unit recording. (bottom left) Coronal brain slice showing expression of CaMKllα::ChR2-EYFP in the prelimbic region. Light blue arrow shows tip of the optical fiber; black arrow shows tip of the recording electrode (left). White bar, 100 microns. (bottom right) In vivo light recording of prefrontal cortical neuron in a transduced CaMKllα::ChR2-EYFP rat showing light-evoked spiking to 20 Hz delivery of blue light pulses (right). Inset, representative light-evoked single-unit response.[19]
Fig 2. Halorhodopsin (NpHR) rapidly and reversibly silences spontaneous activity in vivo in rat prelimbic prefrontal cortex. (Top left) Schematic showing in vivo green (532 nm) light delivery and single- unit recording of a spontaneously active CaMKllα::eNpHR3.0- EYFP expressing pyramidal neuron. (Right) Example trace showing that continuous 532 nm illumination inhibits single-unit activity in vivo. Inset, representative single unit event; Green bar, 10 seconds.[19]

Millisecond-scale temporal precision is central to optogenetics, which allows the experimenter to keep pace with fast biological information processing (for example, in probing the causal role of specific action potential patterns in defined neurons). Indeed, to probe the neural code, optogenetics by definition must operate on the millisecond timescale to allow addition or deletion of precise activity patterns within specific cells in the brains of intact animals, including mammals (see Figure 1). By comparison, the temporal precision of traditional genetic manipulations (employed to probe the causal role of specific genes within cells, via "loss-of-function" or "gain of function" changes in these genes) is rather slow, from hours or days to months. It is important to also have fast readouts in optogenetics that can keep pace with the optical control. This can be done with electrical recordings ("optrodes") or with reporter proteins that are biosensors, where scientists have fused fluorescent proteins to detector proteins. An example of this is voltage-sensitive fluorescent protein (VSFP2).

The hallmark of optogenetics therefore is introduction of fast light-activated channels and enzymes that allow temporally precise manipulation of electrical and biochemical events while maintaining cell-type resolution through the use of specific targeting mechanisms. Among the microbial opsins which can be used to investigate the function of neural systems are the channelrhodopsins (ChR2, ChR1, VChR1, and SFOs) to excite neurons. For silencing, halorhodopsin (NpHR), enhanced halorhodopsins (eNpHR2.0 and eNpHR3.0), archaerhodopsin (Arch), Leptosphaeria maculans fungal opsins (Mac), and enhanced bacteriorhodopsin (eBR) have been employed to inhibit neurons (see Figure 2), including in freely-moving mammals.[20]

Moreover, optogenetic control of well-defined biochemical events within behaving mammals is now also possible. Building on prior work fusing vertebrate opsins to specific G-protein coupled receptors [21] a family of chimeric single-component optogenetic tools was created that allowed researchers to manipulate within behaving mammals the concentration of defined intracellular messengers such as cAMP and IP3 in targeted cells [22] Other biochemical approaches to optogenetics (crucially, with tools that displayed low activity in the dark) followed soon thereafter, when optical control over small GTPases and adenylyl cyclases was achieved in cultured cells using novel strategies from several different laboratories.[23][24][25][26][27] This emerging repertoire of optogenetic probes now allows cell-type-specific and temporally precise control of multiple axes of cellular function within intact animals.

Optogenetics also necessarily includes 1) the development of genetic targeting strategies such as cell-specific promoters or other customized conditionally-active viruses, to deliver the light-sensitive probes to specific populations of neurons in the brain of living animals (e.g. worms, fruit flies, mice, rats, and monkeys), and 2) hardware (e.g. integrated fiberoptic and solid-state light sources) to allow specific cell types, even deep within the brain, to be controlled in freely behaving animals. Most commonly, the latter is now achieved using the fiberoptic-coupled diode technology introduced in 2007 [28][29][30] To stimulate superficial brain areas such as the cerebral cortex, optical fibers or LEDs can be directly mounted to the skull of the animal. More deeply implanted optical fibers have been used to deliver light to deeper brain areas. Complementary to fiber-tethered approaches, completely wireless techniques have been developed utilizing wirelessly delivered power to headborne LEDs for unhindered study of complex behaviors in freely behaving vertebrates. [31] In invertebrates such as worms and fruit flies some amount of retinal isomerase all-trans-retinal (ATR) is supplemented with food. A key advantage of microbial opsins as noted above is that they are fully functional without the addition of exogenous co-factors in vertebrates.

The field of optogenetics has furthered the fundamental scientific understanding of how specific cell types contribute to the function of biological tissues such as neural circuits in vivo (see references from the scientific literature below). Moreover, on the clinical side, optogenetics-driven research has led to insights into Parkinson's disease and other neurological and psychiatric disorders. Indeed, optogenetics papers in 2009 have also provided insight into neural codes relevant to autism, Schizophrenia, drug abuse, anxiety, and depression.[20][32][33][34][35]

It has been pointed out that beyond its scientific impact, optogenetics also represents an important case study in the value of both ecological conservation (as many of the key tools of optogenetics arise from microbial organisms occupying specialized environmental niches), and in the importance of pure basic science (as these opsins were studied over decades for their own sake by biophysicists and microbiologists, without involving consideration of their potential value in delivering insights into neuroscience and neuropsychiatric disease).

Applications

In vivo optogenetic activation and/or silencing has been recorded in the following brain regions and cell-types.

Prefrontal cortex

In vivo and in vitro recordings (by the Cooper laboratory) of individual CAMKII AAV-ChR2 expressing pyramidal neurons within the prefrontal cortex demonstrated high fidelity action potential output with short pulses of blue light at 20 Hz (Figure 1).[19] The same group recorded complete green light-induced silencing of spontaneous activity in the same prefrontal cortical neuronal population expressing an AAV-NpHR vector (Figure 2).[19]

Nucleus accumbens

The Deisseroth laboratory integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of the total population of accumbal neurons, these cholinergic cells are able to control the activity of the dopaminergic terminals that innervate medium spiny neurons (MSNs) in the nucleus accumbens. These accumbal MSNs are known to be involved in the neural pathway through which cocaine exerts its effects, and because decreasing cocaine-induced changes in the activity of these neurons has been shown to inhibit cocaine conditioning. The few cholinergic neurons present in the nucleus accumbens may prove viable targets for pharmacotherapy in the treatment of cocaine dependance[20]

References

  1. ^ a b Deisseroth, K.; Feng, G.; Majewska, A. K.; Miesenbock, G.; Ting, A.; Schnitzer, M. J. (2006). "Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits". Journal of Neuroscience. 26 (41): 10380–6. doi:10.1523/JNEUROSCI.3863-06.2006. PMC 2820367. PMID 17035522.
  2. ^ Zemelman (2002). Neuron. 3 (33): 15–22. PMID 11779476. {{cite journal}}: Missing or empty |title= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ Lima SQ (2005). Cell. 8 (121(1)): 141–52. PMID 15820685. {{cite journal}}: Missing or empty |title= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ "Gero Miesenböck's Official Website". Retrieved 29 May 2013.
  5. ^ Pastrana, Erika (2010). "Optogenetics: Controlling cell function with light". Nature Methods. 8: 24. doi:10.1038/nmeth.f.323.
  6. ^ "Method of the Year 2010". Nature Methods. 8: 1. 2010. doi:10.1038/nmeth.f.321.
  7. ^ Deisseroth, Karl (2010). "Optogenetics". Nature Methods. 8 (1): 26–9. doi:10.1038/nmeth.f.324. PMID 21191368.
  8. ^ News, Staff (2010). "Insights of the decade. Stepping away from the trees for a look at the forest. Introduction". Science. 330 (6011): 1612–3. doi:10.1126/science.330.6011.1612. PMID 21163985. {{cite journal}}: |last1= has generic name (help)
  9. ^ Crick, F. (1999). "The impact of molecular biology on neuroscience". Philos. Trans. R. Soc. Lond. B Biol. Sci. 354 (1392): 2021–25. doi:10.1098/rstb.1999.0541. PMC 1692710. PMID 10670022. {{cite journal}}: Unknown parameter |month= ignored (help)
  10. ^ Fork, R. L. (1971). "Laser stimulation of nerve cells in Aplysia". Science. 171 (3974): 907–8. Bibcode:1971Sci...171..907F. doi:10.1126/science.171.3974.907. PMID 5541653. {{cite journal}}: Unknown parameter |month= ignored (help)
  11. ^ Yuste,, R. (2007). "Two-photon photostimulation and imaging of neural circuits". Nature Methods. 4 (11): 943–950. doi:10.1038/nmeth1105. PMID 17965719. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  12. ^ Zemelman, B. V.; Lee, G. A.; Ng, M.; Miesenböck, G. (2002). "Selective photostimulation of genetically chARGed neurons". Neuron. 33 (1): 15–22. doi:10.1016/S0896-6273(01)00574-8. PMID 11779476.
  13. ^ Lima, S. Q.; Miesenböck, G. (2005). "Remote control of behavior through genetically targeted photostimulation of neurons". Cell. 121 (1): 141–52. doi:10.1016/j.cell.2005.02.004. PMID 15820685.
  14. ^ Banghart, M (21). "Light-activated ion channels for remote control of neuronal firing". Nature Neuroscience. 7 (12): 1381–1386. doi:10.1038/nn1356. PMC 1447674. PMID 15558062. {{cite journal}}: Check date values in: |date= and |year= / |date= mismatch (help); Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  15. ^ Volgraf,, M. (11). "Allosteric control of an ionotropic glutamate receptor with an optical switch". Nature Chemical Biology. 2 (1): 47–52. doi:10.1038/nchembio756. PMC 1447676. PMID 16408092. {{cite journal}}: Check date values in: |date= and |year= / |date= mismatch (help); Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)CS1 maint: extra punctuation (link)
  16. ^ a b Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. (2005). "Millisecond-timescale, genetically targeted optical control of neural activity". Nat. Neurosci. 8 (9): 1263–8. doi:10.1038/nn1525. PMID 16116447.
  17. ^ a b Li,, X. (14). "Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin" (PDF). Proc Natl Acad Sci U S A. 102 (49): 17816–21. Bibcode:2005PNAS..10217816L. doi:10.1073/pnas.0509030102. PMC 1292990. PMID 16306259. {{cite journal}}: Check date values in: |date= and |year= / |date= mismatch (help); Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)CS1 maint: extra punctuation (link)
  18. ^ Nagel,, G. (25). "Channelrhodopsin-2, a directly light-gated cation-selective membrane channel". Proc Natl Acad Sci U S A. 100 (24): 13940–5. Bibcode:2003PNAS..10013940N. doi:10.1073/pnas.1936192100. PMC 283525. PMID 14615590. {{cite journal}}: Check date values in: |date= and |year= / |date= mismatch (help); Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)CS1 maint: extra punctuation (link)
  19. ^ a b c d Baratta M.V., Nakamura S, Dobelis P., Pomrenze M.B., Dolzani S.D. & Cooper D.C. (2012) Optogenetic control of genetically-targeted pyramidal neuron activity in prefrontal cortex. Nature Preceedings April 2 doi=10.1038/npre.2012.7102.1 http://www.neuro-cloud.net/nature-precedings/baratta
  20. ^ a b c Witten, I. B.; Lin, S. C.; Brodsky, M.; Prakash, R.; Diester, I.; Anikeeva, P.; Gradinaru, V.; Ramakrishnan, C.; Deisseroth, K. (2010). "Cholinergic interneurons control local circuit activity and cocaine conditioning" Science 330 (6011) 1677–81. . PMC 3142356.doi:10.1126/science.1193771 PMID 21164015
  21. ^ Kim, J. M.; Hwa, J.; Garriga, P.; Reeves, P. J.; RajBhandary, U. L.; Khorana, H. G. (2005). "Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops". Biochemistry. 44 (7): 2284–92. doi:10.1021/bi048328i. PMID 15709741.
  22. ^ Airan, R. D.; Thompson, K. R.; Fenno, L. E.; Bernstein, H.; Deisseroth, K. (2009). "Temporally precise in vivo control of intracellular signalling". Nature. 458 (7241): 1025–9. Bibcode:2009Natur.458.1025A. doi:10.1038/nature07926. PMID 19295515.
  23. ^ Levskaya, Anselm; Weiner, Orion D.; Lim, Wendell A.; Voigt, Christopher A. (2009). "Spatiotemporal control of cell signalling using a light-switchable protein interaction". Nature. 461 (7266): 997–1001. Bibcode:2009Natur.461..997L. doi:10.1038/nature08446. PMC 2989900. PMID 19749742. {{cite journal}}: Unknown parameter |month= ignored (help)
  24. ^ Wu, Yi I.; Frey, Daniel; Lungu, Oana I.; Jaehrig, Angelika; Schlichting, Ilme; Kuhlman, Brian; Hahn, Klaus M. (2009). "A genetically encoded photoactivatable Rac controls the motility of living cells". Nature. 461 (7260): 104–8. Bibcode:2009Natur.461..104W. doi:10.1038/nature08241. PMC 2766670. PMID 19693014. {{cite journal}}: Unknown parameter |month= ignored (help). PMC 2766670. PMID 19693014
  25. ^ Yazawa, M.; Sadaghiani, A. M.; Hsueh, B.; Dolmetsch, R. E. (2009). "Induction of protein-protein interactions in live cells using light". Nature Biotechnology. 27 (10): 941–5. doi:10.1038/nbt.1569. PMID 19801976.
  26. ^ Stierl, M.; Stumpf, P.; Udwari, D.; Gueta, R.; Hagedorn, R.; Losi, A.; Gartner, W.; Petereit, L.; Efetova, M. (2011). "Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa". J. Biol. Chem. 286 (2): 1181–8. doi:10.1074/jbc.M110.185496. PMC 3020725. PMID 21030594. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: unflagged free DOI (link)
  27. ^ Ryu, M.-H.; Moskvin, O. V.; Siltberg-Liberles, J.; Gomelsky, M. (2010). "Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications". J. Biol. Chem. 285 (53): 41501–8. doi:10.1074/jbc.M110.177600. PMC 3009876. PMID 21030591. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: unflagged free DOI (link)
  28. ^ Aravanis, Alexander M; Wang, Li-Ping; Zhang, Feng; Meltzer, Leslie A; Mogri, Murtaza Z; Schneider, M Bret; Deisseroth, Karl (2007). "An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology". J Neural Eng. 4 (3): S143–56. Bibcode:2007JNEng...4S.143A. doi:10.1088/1741-2560/4/3/S02. PMID 17873414. {{cite journal}}: Unknown parameter |month= ignored (help). PMID 17873414
  29. ^ Adamantidis, Antoine R.; Zhang, Feng; Aravanis, Alexander M.; Deisseroth, Karl; De Lecea, Luis (2007). "Neural substrates of awakening probed with optogenetic control of hypocretin neurons". Nature. 450 (7168): 420–4. Bibcode:2007Natur.450..420A. doi:10.1038/nature06310. PMID 17943086. {{cite journal}}: Unknown parameter |month= ignored (help). PMID 17943086
  30. ^ Gradinaru, V.; Thompson, K. R.; Zhang, F.; Mogri, M.; Kay, K.; Schneider, M. B.; Deisseroth, K.; et al. (2007). ""Targeting and readout strategies for fast optical neural control in vitro and in vivo". J. Neurosci. 27 (52): 14231–8. doi:10.1523/JNEUROSCI.3578-07.2007. PMID 18160630. {{cite journal}}: Explicit use of et al. in: |first4= (help)
  31. ^ Wentz, Christian T; Bernstein, Jacob G; Monahan, Patrick; Guerra, Alexander; Rodriguez, Alex; Boyden, Edward S (2011). "A wirelessly powered and controlled device for optical neural control of freely-behaving animals". Journal of Neural Engineering. 8 (4): 046021. doi:10.1088/1741-2560/8/4/046021. PMC 3151576. PMID 21701058.
  32. ^ Cardin, J. A.; Carlén, M.; Meletis, K.; Knoblich, Ulf; Zhang, Feng; Deisseroth, Karl; Tsai, Li-Huei; Moore, Christopher I.; et al. (2009). "(June 2009). "Driving fast-spiking cells induces gamma rhythm and controls sensory responses". Nature. 459 (7247): 663–7. Bibcode:2009Natur.459..663C. doi:10.1038/nature08002. PMID 19396156. {{cite journal}}: Explicit use of et al. in: |first4= (help)
  33. ^ Gradinaru, V.; Mogri, M.; Thompson, K. R.; Henderson, J. M.; Deisseroth, K. (2009). "Optical deconstruction of parkinsonian neural circuitry". Science. 324 (5925): 354–9. Bibcode:2009Sci...324..354G. doi:10.1126/science.1167093. PMID 19299587.
  34. ^ Sohal, V. S.; Zhang, F.; Yizhar, O.; Deisseroth, K. (2009). "Parvalbumin neurons and gamma rhythms enhance cortical circuit performance". Nature. 459 (7247): 698–702. Bibcode:2009Natur.459..698S. doi:10.1038/nature07991. PMID 19396159.
  35. ^ Tsai, H.C.; Zhang, F.; Adamantidis, A.; Stuber, G. D.; Bonci, A.; De Lecea, L.; Deisseroth, K.; et al. (2009). ""Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning". Science. 324 (5930): 1080–4. Bibcode:2009Sci...324.1080T. doi:10.1126/science.1168878. PMID 19389999. {{cite journal}}: Explicit use of et al. in: |first4= (help)

Additional reading