Optogenetics
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (April 2013) |
Optogenetics is a neuromodulation technique employed in neuroscience that uses a combination of techniques from optics and genetics to control the activity of individual neurons in living tissue—even within freely-moving animals—and to precisely measure the effects of those manipulations in real-time.[1] The earliest approaches (like those developed and applied by Gero Miesenböck[2][3]), now Waynflete Professor of Physiology at the University of Oxford,[4] and Richard Kramer and Ehud Isacoff at the University of California, Berkeley) conferred light sensitivity but were never reported to be useful by other laboratories due to the multiple components these approaches required. A distinct single-component approach involving microbial opsin genes introduced in 2005 turned out to be widely applied as described below. Optogenetics is known for the high spatial and temporal resolution that it provides in altering the activity of specific types of neurons within defined brain areas to control a subject's behavior.
In 2010 Karl Deisseroth at Stanford University was awarded the inaugural HFSP Nakasone Award "for his pioneering work on the development of optogenetic methods for studying the function of neuronal networks underlying behavior."
In 2010, optogenetics was chosen as the Method of the Year across all fields of science and engineering by the interdisciplinary research journal Nature Methods (Primer on Optogenetics,[5] Editorial[6] Commentary[7]). At the same time, optogenetics was highlighted in the article on “Breakthroughs of the Decade” in the scientific research journal Science Breakthrough of the Decade;[8] these journals also referenced recent public-access general-interest video Method of the year video and textual SciAm summaries of optogenetics.
In 2012 Gero Miesenböck was awarded the InBev-Baillet Latour International Health Prize for "pioneering optogenetic approaches to manipulate neuronal activity and to control animal behaviour."
History
The "far-fetched" possibility of using light for selectively controlling precise neural activity (action potential) patterns within subtypes of cells in the brain was articulated by Francis Crick in his Kuffler Lectures at the University of California in San Diego in 1999.[9] An early use of light to activate neurons was carried out by Richard Fork[10] and later Rafael Yuste,[11] who demonstrated laser activation of neurons within intact tissue, although not in a genetically-targeted manner. The earliest genetically targeted method, which used light to control genetically-sensitised neurons, was reported in January 2002 by Boris Zemelman and Gero Miesenböck, who employed Drosophila rhodopsin photoreceptors for controlling neural activity in cultured mammalian neurons.[12] In April 2005, Susana Lima and Miesenböck reported the first use of genetically-targeted photostimulation to control the behaviour of an animal.[13] They showed that photostimulation of genetically circumscribed groups of neurons, such as those of the dopaminergic system, elicited characteristic behavioural changes in fruit flies. Beginning in 2004, the Kramer and Isacoff groups developed organic photoswitches or "caged" compounds that could interact with genetically-introduced ion channels.[14][15] However, these earlier approaches were not applied outside the original laboratories, likely because of technical challenges in delivering the multiple component parts required.
In August 2005, Karl Deisseroth's laboratory in the Bioengineering Department at Stanford including graduate students Ed Boyden and Feng Zhang (both now at MIT) published the first demonstration of a single-component optogenetic system, beginning in cultured mammalian neurons.[16][17] using channelrhodopsin, a single-component light-activated cation channel from unicellular algae), whose molecular identity had been confimed in November 2003.[18] Channelrhodopsin (ChR) allowed millisecond-scale temporal control in mammals, required only one gene to be expressed in order to work, and responded to visible-spectrum light with a chromophore retinal that was already present and supplied to the ChR by the vertebrate tissues.[16][17] The surprising experimental utility of this single-component "microbial opsin" approach was quickly proven with many additional microbial opsin classes and in a variety of animal models ranging from behaving mammals to classical model organisms such as flies, worms, and zebrafish. The "optogenetic" terminology was coined in 2006,[1] and since 2005, hundreds of laboratories around the world have employed microbial opsins to study complex biological systems (references below).
Description
Millisecond-scale temporal precision is central to optogenetics, which allows the experimenter to keep pace with fast biological information processing (for example, in probing the causal role of specific action potential patterns in defined neurons). Indeed, to probe the neural code, optogenetics by definition must operate on the millisecond timescale to allow addition or deletion of precise activity patterns within specific cells in the brains of intact animals, including mammals (see Figure 1). By comparison, the temporal precision of traditional genetic manipulations (employed to probe the causal role of specific genes within cells, via "loss-of-function" or "gain of function" changes in these genes) is rather slow, from hours or days to months. It is important to also have fast readouts in optogenetics that can keep pace with the optical control. This can be done with electrical recordings ("optrodes") or with reporter proteins that are biosensors, where scientists have fused fluorescent proteins to detector proteins. An example of this is voltage-sensitive fluorescent protein (VSFP2).
The hallmark of optogenetics therefore is introduction of fast light-activated channels and enzymes that allow temporally precise manipulation of electrical and biochemical events while maintaining cell-type resolution through the use of specific targeting mechanisms. Among the microbial opsins which can be used to investigate the function of neural systems are the channelrhodopsins (ChR2, ChR1, VChR1, and SFOs) to excite neurons. For silencing, halorhodopsin (NpHR), enhanced halorhodopsins (eNpHR2.0 and eNpHR3.0), archaerhodopsin (Arch), Leptosphaeria maculans fungal opsins (Mac), and enhanced bacteriorhodopsin (eBR) have been employed to inhibit neurons (see Figure 2), including in freely-moving mammals.[20]
Moreover, optogenetic control of well-defined biochemical events within behaving mammals is now also possible. Building on prior work fusing vertebrate opsins to specific G-protein coupled receptors [21] a family of chimeric single-component optogenetic tools was created that allowed researchers to manipulate within behaving mammals the concentration of defined intracellular messengers such as cAMP and IP3 in targeted cells [22] Other biochemical approaches to optogenetics (crucially, with tools that displayed low activity in the dark) followed soon thereafter, when optical control over small GTPases and adenylyl cyclases was achieved in cultured cells using novel strategies from several different laboratories.[23][24][25][26][27] This emerging repertoire of optogenetic probes now allows cell-type-specific and temporally precise control of multiple axes of cellular function within intact animals.
Optogenetics also necessarily includes 1) the development of genetic targeting strategies such as cell-specific promoters or other customized conditionally-active viruses, to deliver the light-sensitive probes to specific populations of neurons in the brain of living animals (e.g. worms, fruit flies, mice, rats, and monkeys), and 2) hardware (e.g. integrated fiberoptic and solid-state light sources) to allow specific cell types, even deep within the brain, to be controlled in freely behaving animals. Most commonly, the latter is now achieved using the fiberoptic-coupled diode technology introduced in 2007 [28][29][30] To stimulate superficial brain areas such as the cerebral cortex, optical fibers or LEDs can be directly mounted to the skull of the animal. More deeply implanted optical fibers have been used to deliver light to deeper brain areas. Complementary to fiber-tethered approaches, completely wireless techniques have been developed utilizing wirelessly delivered power to headborne LEDs for unhindered study of complex behaviors in freely behaving vertebrates. [31] In invertebrates such as worms and fruit flies some amount of retinal isomerase all-trans-retinal (ATR) is supplemented with food. A key advantage of microbial opsins as noted above is that they are fully functional without the addition of exogenous co-factors in vertebrates.
The field of optogenetics has furthered the fundamental scientific understanding of how specific cell types contribute to the function of biological tissues such as neural circuits in vivo (see references from the scientific literature below). Moreover, on the clinical side, optogenetics-driven research has led to insights into Parkinson's disease and other neurological and psychiatric disorders. Indeed, optogenetics papers in 2009 have also provided insight into neural codes relevant to autism, Schizophrenia, drug abuse, anxiety, and depression.[20][32][33][34][35]
It has been pointed out that beyond its scientific impact, optogenetics also represents an important case study in the value of both ecological conservation (as many of the key tools of optogenetics arise from microbial organisms occupying specialized environmental niches), and in the importance of pure basic science (as these opsins were studied over decades for their own sake by biophysicists and microbiologists, without involving consideration of their potential value in delivering insights into neuroscience and neuropsychiatric disease).
Applications
In vivo optogenetic activation and/or silencing has been recorded in the following brain regions and cell-types.
Prefrontal cortex
In vivo and in vitro recordings (by the Cooper laboratory) of individual CAMKII AAV-ChR2 expressing pyramidal neurons within the prefrontal cortex demonstrated high fidelity action potential output with short pulses of blue light at 20 Hz (Figure 1).[19] The same group recorded complete green light-induced silencing of spontaneous activity in the same prefrontal cortical neuronal population expressing an AAV-NpHR vector (Figure 2).[19]
Nucleus accumbens
The Deisseroth laboratory integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of the total population of accumbal neurons, these cholinergic cells are able to control the activity of the dopaminergic terminals that innervate medium spiny neurons (MSNs) in the nucleus accumbens. These accumbal MSNs are known to be involved in the neural pathway through which cocaine exerts its effects, and because decreasing cocaine-induced changes in the activity of these neurons has been shown to inhibit cocaine conditioning. The few cholinergic neurons present in the nucleus accumbens may prove viable targets for pharmacotherapy in the treatment of cocaine dependance[20]
References
- ^ a b Deisseroth, K.; Feng, G.; Majewska, A. K.; Miesenbock, G.; Ting, A.; Schnitzer, M. J. (2006). "Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits". Journal of Neuroscience. 26 (41): 10380–6. doi:10.1523/JNEUROSCI.3863-06.2006. PMC 2820367. PMID 17035522.
- ^ Zemelman (2002). Neuron. 3 (33): 15–22. PMID 11779476.
{{cite journal}}
: Missing or empty|title=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Lima SQ (2005). Cell. 8 (121(1)): 141–52. PMID 15820685.
{{cite journal}}
: Missing or empty|title=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ "Gero Miesenböck's Official Website". Retrieved 29 May 2013.
- ^ Pastrana, Erika (2010). "Optogenetics: Controlling cell function with light". Nature Methods. 8: 24. doi:10.1038/nmeth.f.323.
- ^ "Method of the Year 2010". Nature Methods. 8: 1. 2010. doi:10.1038/nmeth.f.321.
- ^ Deisseroth, Karl (2010). "Optogenetics". Nature Methods. 8 (1): 26–9. doi:10.1038/nmeth.f.324. PMID 21191368.
- ^ News, Staff (2010). "Insights of the decade. Stepping away from the trees for a look at the forest. Introduction". Science. 330 (6011): 1612–3. doi:10.1126/science.330.6011.1612. PMID 21163985.
{{cite journal}}
:|last1=
has generic name (help) - ^ Crick, F. (1999). "The impact of molecular biology on neuroscience". Philos. Trans. R. Soc. Lond. B Biol. Sci. 354 (1392): 2021–25. doi:10.1098/rstb.1999.0541. PMC 1692710. PMID 10670022.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ Fork, R. L. (1971). "Laser stimulation of nerve cells in Aplysia". Science. 171 (3974): 907–8. Bibcode:1971Sci...171..907F. doi:10.1126/science.171.3974.907. PMID 5541653.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ Yuste,, R. (2007). "Two-photon photostimulation and imaging of neural circuits". Nature Methods. 4 (11): 943–950. doi:10.1038/nmeth1105. PMID 17965719.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)CS1 maint: extra punctuation (link) - ^ Zemelman, B. V.; Lee, G. A.; Ng, M.; Miesenböck, G. (2002). "Selective photostimulation of genetically chARGed neurons". Neuron. 33 (1): 15–22. doi:10.1016/S0896-6273(01)00574-8. PMID 11779476.
- ^ Lima, S. Q.; Miesenböck, G. (2005). "Remote control of behavior through genetically targeted photostimulation of neurons". Cell. 121 (1): 141–52. doi:10.1016/j.cell.2005.02.004. PMID 15820685.
- ^ Banghart, M (21). "Light-activated ion channels for remote control of neuronal firing". Nature Neuroscience. 7 (12): 1381–1386. doi:10.1038/nn1356. PMC 1447674. PMID 15558062.
{{cite journal}}
: Check date values in:|date=
and|year=
/|date=
mismatch (help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help); Unknown parameter|month=
ignored (help) - ^ Volgraf,, M. (11). "Allosteric control of an ionotropic glutamate receptor with an optical switch". Nature Chemical Biology. 2 (1): 47–52. doi:10.1038/nchembio756. PMC 1447676. PMID 16408092.
{{cite journal}}
: Check date values in:|date=
and|year=
/|date=
mismatch (help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help); Unknown parameter|month=
ignored (help)CS1 maint: extra punctuation (link) - ^ a b Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. (2005). "Millisecond-timescale, genetically targeted optical control of neural activity". Nat. Neurosci. 8 (9): 1263–8. doi:10.1038/nn1525. PMID 16116447.
- ^ a b Li,, X. (14). "Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin" (PDF). Proc Natl Acad Sci U S A. 102 (49): 17816–21. Bibcode:2005PNAS..10217816L. doi:10.1073/pnas.0509030102. PMC 1292990. PMID 16306259.
{{cite journal}}
: Check date values in:|date=
and|year=
/|date=
mismatch (help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help); Unknown parameter|month=
ignored (help)CS1 maint: extra punctuation (link) - ^ Nagel,, G. (25). "Channelrhodopsin-2, a directly light-gated cation-selective membrane channel". Proc Natl Acad Sci U S A. 100 (24): 13940–5. Bibcode:2003PNAS..10013940N. doi:10.1073/pnas.1936192100. PMC 283525. PMID 14615590.
{{cite journal}}
: Check date values in:|date=
and|year=
/|date=
mismatch (help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help); Unknown parameter|month=
ignored (help)CS1 maint: extra punctuation (link) - ^ a b c d Baratta M.V., Nakamura S, Dobelis P., Pomrenze M.B., Dolzani S.D. & Cooper D.C. (2012) Optogenetic control of genetically-targeted pyramidal neuron activity in prefrontal cortex. Nature Preceedings April 2 doi=10.1038/npre.2012.7102.1 http://www.neuro-cloud.net/nature-precedings/baratta
- ^ a b c Witten, I. B.; Lin, S. C.; Brodsky, M.; Prakash, R.; Diester, I.; Anikeeva, P.; Gradinaru, V.; Ramakrishnan, C.; Deisseroth, K. (2010). "Cholinergic interneurons control local circuit activity and cocaine conditioning" Science 330 (6011) 1677–81. . PMC 3142356.doi:10.1126/science.1193771 PMID 21164015
- ^ Kim, J. M.; Hwa, J.; Garriga, P.; Reeves, P. J.; RajBhandary, U. L.; Khorana, H. G. (2005). "Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops". Biochemistry. 44 (7): 2284–92. doi:10.1021/bi048328i. PMID 15709741.
- ^ Airan, R. D.; Thompson, K. R.; Fenno, L. E.; Bernstein, H.; Deisseroth, K. (2009). "Temporally precise in vivo control of intracellular signalling". Nature. 458 (7241): 1025–9. Bibcode:2009Natur.458.1025A. doi:10.1038/nature07926. PMID 19295515.
- ^ Levskaya, Anselm; Weiner, Orion D.; Lim, Wendell A.; Voigt, Christopher A. (2009). "Spatiotemporal control of cell signalling using a light-switchable protein interaction". Nature. 461 (7266): 997–1001. Bibcode:2009Natur.461..997L. doi:10.1038/nature08446. PMC 2989900. PMID 19749742.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ Wu, Yi I.; Frey, Daniel; Lungu, Oana I.; Jaehrig, Angelika; Schlichting, Ilme; Kuhlman, Brian; Hahn, Klaus M. (2009). "A genetically encoded photoactivatable Rac controls the motility of living cells". Nature. 461 (7260): 104–8. Bibcode:2009Natur.461..104W. doi:10.1038/nature08241. PMC 2766670. PMID 19693014.
{{cite journal}}
: Unknown parameter|month=
ignored (help). PMC 2766670. PMID 19693014 - ^ Yazawa, M.; Sadaghiani, A. M.; Hsueh, B.; Dolmetsch, R. E. (2009). "Induction of protein-protein interactions in live cells using light". Nature Biotechnology. 27 (10): 941–5. doi:10.1038/nbt.1569. PMID 19801976.
- ^ Stierl, M.; Stumpf, P.; Udwari, D.; Gueta, R.; Hagedorn, R.; Losi, A.; Gartner, W.; Petereit, L.; Efetova, M. (2011). "Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa". J. Biol. Chem. 286 (2): 1181–8. doi:10.1074/jbc.M110.185496. PMC 3020725. PMID 21030594.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: unflagged free DOI (link) - ^ Ryu, M.-H.; Moskvin, O. V.; Siltberg-Liberles, J.; Gomelsky, M. (2010). "Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications". J. Biol. Chem. 285 (53): 41501–8. doi:10.1074/jbc.M110.177600. PMC 3009876. PMID 21030591.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: unflagged free DOI (link) - ^ Aravanis, Alexander M; Wang, Li-Ping; Zhang, Feng; Meltzer, Leslie A; Mogri, Murtaza Z; Schneider, M Bret; Deisseroth, Karl (2007). "An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology". J Neural Eng. 4 (3): S143–56. Bibcode:2007JNEng...4S.143A. doi:10.1088/1741-2560/4/3/S02. PMID 17873414.
{{cite journal}}
: Unknown parameter|month=
ignored (help). PMID 17873414 - ^ Adamantidis, Antoine R.; Zhang, Feng; Aravanis, Alexander M.; Deisseroth, Karl; De Lecea, Luis (2007). "Neural substrates of awakening probed with optogenetic control of hypocretin neurons". Nature. 450 (7168): 420–4. Bibcode:2007Natur.450..420A. doi:10.1038/nature06310. PMID 17943086.
{{cite journal}}
: Unknown parameter|month=
ignored (help). PMID 17943086 - ^ Gradinaru, V.; Thompson, K. R.; Zhang, F.; Mogri, M.; Kay, K.; Schneider, M. B.; Deisseroth, K.; et al. (2007). ""Targeting and readout strategies for fast optical neural control in vitro and in vivo". J. Neurosci. 27 (52): 14231–8. doi:10.1523/JNEUROSCI.3578-07.2007. PMID 18160630.
{{cite journal}}
: Explicit use of et al. in:|first4=
(help) - ^ Wentz, Christian T; Bernstein, Jacob G; Monahan, Patrick; Guerra, Alexander; Rodriguez, Alex; Boyden, Edward S (2011). "A wirelessly powered and controlled device for optical neural control of freely-behaving animals". Journal of Neural Engineering. 8 (4): 046021. doi:10.1088/1741-2560/8/4/046021. PMC 3151576. PMID 21701058.
- ^ Cardin, J. A.; Carlén, M.; Meletis, K.; Knoblich, Ulf; Zhang, Feng; Deisseroth, Karl; Tsai, Li-Huei; Moore, Christopher I.; et al. (2009). "(June 2009). "Driving fast-spiking cells induces gamma rhythm and controls sensory responses". Nature. 459 (7247): 663–7. Bibcode:2009Natur.459..663C. doi:10.1038/nature08002. PMID 19396156.
{{cite journal}}
: Explicit use of et al. in:|first4=
(help) - ^ Gradinaru, V.; Mogri, M.; Thompson, K. R.; Henderson, J. M.; Deisseroth, K. (2009). "Optical deconstruction of parkinsonian neural circuitry". Science. 324 (5925): 354–9. Bibcode:2009Sci...324..354G. doi:10.1126/science.1167093. PMID 19299587.
- ^ Sohal, V. S.; Zhang, F.; Yizhar, O.; Deisseroth, K. (2009). "Parvalbumin neurons and gamma rhythms enhance cortical circuit performance". Nature. 459 (7247): 698–702. Bibcode:2009Natur.459..698S. doi:10.1038/nature07991. PMID 19396159.
- ^ Tsai, H.C.; Zhang, F.; Adamantidis, A.; Stuber, G. D.; Bonci, A.; De Lecea, L.; Deisseroth, K.; et al. (2009). ""Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning". Science. 324 (5930): 1080–4. Bibcode:2009Sci...324.1080T. doi:10.1126/science.1168878. PMID 19389999.
{{cite journal}}
: Explicit use of et al. in:|first4=
(help)
Additional reading
- Airan, R. D.; Hu, E. S.; Vijaykumar, R.; Roy, M.; Meltzer, L. A.; Deisseroth, K. (2007). "Integration of light-controlled neuronal firing and fast circuit imaging". Curr. Opin. Neurobiol. 17 (5): 587–92. doi:10.1016/j.conb.2007.11.003. PMID 18093822.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Alilain, W. J.; Li, X.; Horn, K. P.; Dhingra, R.; et al. (2008). "Light-induced rescue of breathing after spinal cord injury". J. Neurosci. 28 (46): 11862–70. doi:10.1523/JNEUROSCI.3378-08.2008. PMC 2615537. PMID 19005051.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Arenkiel, B. R.; Peca, J.; Davison, I. G.; Feliciano, Catia; et al. (2007). "In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2". Neuron. 54 (2): 205–18. doi:10.1016/j.neuron.2007.03.005. PMID 17442243.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Atasoy, D.; Aponte, Y.; Su, H. H.; Sternson, S. M. (2008). "A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping". J. Neurosci. 28 (28): 7025–30. doi:10.1523/JNEUROSCI.1954-08.2008. PMC 2593125. PMID 18614669.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Ayling, O. G.; Harrison, T. C.; Boyd, J. D.; Goroshkov, A.; Murphy, T. H. (2009). "Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice". Nat. Methods. 6 (3): 219–24. doi:10.1038/nmeth.1303. PMID 19219033.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Banghart, M.; Borges, K.; Isacoff, E.; Trauner, D.; Kramer, R. H. (2004). "Light-activated ion channels for remote control of neuronal firing". Nat. Neurosci. 7 (12): 1381–6. doi:10.1038/nn1356. PMC 1447674. PMID 15558062.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Berndt, A. (2009 Feb). "Bi-stable neural state switches". Nature Neuroscience. 12 (2): 229–34. doi:10.1038/nn.2247. PMID 19079251.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Bi, A.; Cui, J.; Ma, Y. P.; Olshevskaya, Elena; et al. (2006). "Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration". Neuron. 50 (1): 23–33. doi:10.1016/j.neuron.2006.02.026. PMC 1459045. PMID 16600853.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. (2005). "Millisecond-timescale, genetically targeted optical control of neural activity". Nat. Neurosci. 8 (9): 1263–8. doi:10.1038/nn1525. PMID 16116447.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Busskamp, V. (2010-07-23). "Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa". Science. 329 (5990): 413–7. Bibcode:2010Sci...329..413B. doi:10.1126/science.1190897. PMID 20576849.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Cardin, J. A. (2010). "Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2". Nature protocols. 5 (2): 247–54. doi:10.1038/nprot.2009.228. PMID 20134425.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Carter, M. E. (2009-09-02). "Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions". Journal of Neuroscience. 29 (35): 10939–49. doi:10.1523/JNEUROSCI.1205-09.2009. PMID 19726652.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Carter, M. E. (2010 Dec). "Tuning arousal with optogenetic modulation of locus coeruleus neurons". Nature Neuroscience. 13 (12): 1526–33. doi:10.1038/nn.2682. PMC 3174240. PMID 21037585.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Chow, B. Y.; Han, X.; Dobry, A. S.; Qian, Xiaofeng; et al. (2010). "High-performance genetically targetable optical neural silencing by light-driven proton pumps". Nature. 463 (7277): 98–102. Bibcode:2010Natur.463...98C. doi:10.1038/nature08652. PMC 2939492. PMID 20054397.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Claridge-Chang, A.; Roorda, R. D.; Vrontou, E.; Sjulson, L.; Li, H.; Hirsh, J.; Miesenböck, G. (2009). "Writing memories with light-addressable reinforcement circuitry". Cell. 139 (2): 405–15. doi:10.1016/j.cell.2009.08.034. PMID 19837039.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Clyne, J. D.; Miesenböck, G. (2008). "Sex-specific control and tuning of the pattern generator for courtship song in Drosophila". Cell. 133 (2): 354–63. doi:10.1016/j.cell.2008.01.050. PMID 18423205.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Crick, F. (1999). "The impact of molecular biology on neuroscience". Philos. Trans. R. Soc. Lond. B Biol. Sci. 354 (1392): 2021–25. doi:10.1098/rstb.1999.0541. PMC 1692710. PMID 10670022.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Deisseroth, Karl. "Optogenetics: Controlling the Brain with Light".
- Diester, I. (2011 Mar). "An optogenetic toolbox designed for primates". Nature Neuroscience. 14 (3): 387–97. doi:10.1038/nn.2749. PMC 3150193. PMID 21278729.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Douglass, A. D.; Kraves, S.; Deisseroth, K.; Schier, A. F.; Engert, F. (2008). "Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons". Curr. Biol. 18 (15): 1133–7. doi:10.1016/j.cub.2008.06.077. PMC 2891506. PMID 18682213.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Gradinaru, V.; Thompson, K. R.; Zhang, F.; Mogri, M.; et al. (2007). "Targeting and readout strategies for fast optical neural control in vitro and in vivo". J. Neurosci. 27 (52): 14231–8. doi:10.1523/JNEUROSCI.3578-07.2007. PMID 18160630.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Gradinaru, V. (2008 Aug). "eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications". Brain cell biology. 36 (1–4): 129–39. doi:10.1007/s11068-008-9027-6. PMC 2588488. PMID 18677566.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Gourine, A. V. (2010-07-30). "Astrocytes control breathing through pH-dependent release of ATP". Science. 329 (5991): 571–5. Bibcode:2010Sci...329..571G. doi:10.1126/science.1190721. PMC 3160742. PMID 20647426.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Gradinaru, V. (2010-04-02). "Molecular and cellular approaches for diversifying and extending optogenetics". Cell. 141 (1): 154–65. doi:10.1016/j.cell.2010.02.037. PMID 20303157.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Gunaydin, L. A. (2010 Mar). "Ultrafast optogenetic control". Nature Neuroscience. 13 (3): 387–92. doi:10.1038/nn.2495. PMID 20081849.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help)
- Han, X.; Boyden E. S. (2007). Rustichini, Aldo (ed.). "Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution". PLoS ONE. 2 (3): e299. Bibcode:2007PLoSO...2..299H. doi:10.1371/journal.pone.0000299. PMC 1808431. PMID 17375185.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - Han, X.; Qian, X.; Bernstein, J. G.; Zhou, Hui-hui; et al. (2009). "Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain". Neuron. 62 (2): 191–8. doi:10.1016/j.neuron.2009.03.011. PMC 2830644. PMID 19409264.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Haubensak, W. (2010-11-11). "Genetic dissection of an amygdala microcircuit that gates conditioned fear". Nature. 468 (7321): 270–6. Bibcode:2010Natur.468..270H. doi:10.1038/nature09553. PMC 3597095. PMID 21068836.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Hira, R.; Honkura, N.; Noguchi, J.; Maruyama, Yoshio; et al. (2009). "Transcranial optogenetic stimulation for functional mapping of the motor cortex". J. Neurosci. Methods. 179 (2): 258–63. doi:10.1016/j.jneumeth.2009.02.001. PMID 19428535.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Hu, E. S. (2008 Jul). "Brain circuit dynamics". The American Journal of Psychiatry. 165 (7): 800. doi:10.1176/appi.ajp.2008.08050764. PMID 18593784.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Huber, D.; Petreanu, L.; Ghitani, N.; Ranade, Sachin; et al. (2008). "Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice". Nature. 451 (7174): 61–4. Bibcode:2008Natur.451...61H. doi:10.1038/nature06445. PMC 3425380. PMID 18094685.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Hwang, R. Y. (2007-12-18). "Nociceptive neurons protect Drosophila larvae from parasitoid wasps". Current biology : CB. 17 (24): 2105–16. doi:10.1016/j.cub.2007.11.029. PMC 2225350. PMID 18060782.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)
- Johansen, J. P. (2010-07-13). "Optical activation of lateral amygdala pyramidal cells instructs associative fear learning". Proceedings of the National Academy of Sciences of the United States of America. 107 (28): 12692–7. Bibcode:2010PNAS..10712692J. doi:10.1073/pnas.1002418107. PMC 2906568. PMID 20615999.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)
- Kim, J. M.; Hwa, J.; Garriga, P.; Reeves, P. J.; RajBhandary, U. L.; Khorana, H. G. (2005). "Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops". Biochemistry. 44 (7): 2284–92. doi:10.1021/bi048328i. PMID 15709741.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Kravitz, A. V. (2010-07-29). "Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry". Nature. 466 (7306): 622–6. Bibcode:2010Natur.466..622K. doi:10.1038/nature09159. PMC 3552484. PMID 20613723.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Kuhlman, S. J.; Huang, Z. J. (2008). Wong, Rachel O. L. (ed.). "High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression". PLoS ONE. 3 (4): e2005. Bibcode:2008PLoSO...3.2005K. doi:10.1371/journal.pone.0002005. PMC 2289876. PMID 18414675.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
- Lagali, P. S.; Balya, D.; Awatramani, G. B.; Münch, Thomas A; et al. (2008). "Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration". Nat. Neurosci. 11 (6): 667–75. doi:10.1038/nn.2117. PMID 18432197.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Lee, J. H. (2010-06-10). "Global and local fMRI signals driven by neurons defined optogenetically by type and wiring". Nature. 465 (7299): 788–92. Bibcode:2010Natur.465..788L. doi:10.1038/nature09108. PMC 3177305. PMID 20473285.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Levskaya, A. (2009-10-15). "Spatiotemporal control of cell signalling using a light-switchable protein interaction". Nature. 461 (7266): 997–1001. Bibcode:2009Natur.461..997L. doi:10.1038/nature08446. PMC 2989900. PMID 19749742.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Li, H. H. (2009 Apr). "Induced chromosome deletions cause hypersociability and other features of Williams-Beuren syndrome in mice". EMBO molecular medicine. 1 (1): 50–65. doi:10.1002/emmm.200900003. PMC 3378107. PMID 20049703.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Liewald, J. F.; Brauner, M.; Stephens, G. J.; Bouhours, Magali; et al. (2008). "Optogenetic analysis of synaptic function". Nat. Methods. 5 (10): 895–902. doi:10.1038/nmeth.1252. PMID 18794862.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Lima, S. Q.; Hromádka, T.; Znamenskiy, P.; Zador, A. M. (2009). Nitabach, Michael N. (ed.). "PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording". PLoS ONE. 4 (7): e6099. Bibcode:2009PLoSO...4.6099L. doi:10.1371/journal.pone.0006099. PMC 2702752. PMID 19584920.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - Lin, J. Y.; Lin, M. Z.; Steinbach, P.; Tsien, R. Y. (2009). "Characterization of engineered channelrhodopsin variants with improved properties and kinetics". Biophys. J. 96 (5): 1803–14. Bibcode:2009BpJ....96.1803L. doi:10.1016/j.bpj.2008.11.034. PMC 2717302. PMID 19254539.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Liu, Q.; Hollopeter, G.; Jorgensen, E. M. (2009). "Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction". Proc. Natl. Acad. Sci. U.S.A. 106 (26): 10823–8. Bibcode:2009PNAS..10610823L. doi:10.1073/pnas.0903570106. PMC 2705609. PMID 19528650.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Llewellyn, M. E. (2010 Oct). "Orderly recruitment of motor units under optical control in vivo". Nature Medicine. 16 (10): 1161–5. doi:10.1038/nm.2228. PMID 20871612.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Lobo, M. K. (2010-10-15). "Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward". Science. 330 (6002): 385–90. Bibcode:2010Sci...330..385L. doi:10.1126/science.1188472. PMC 3011229. PMID 20947769.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)
- Editorial (2010). "Method of the Year 2010". Nature Methods. 8 (1): 1–1. doi:10.1038/nMeth.F.321.
- Miesenböck, G. (2008). "Lighting up the brain". Sci. Am. 299 (4): 52–9. doi:10.1038/scientificamerican1008-52. PMID 18847085.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Miesenböck, G. (2009). "The optogenetic catechism". Science. 326 (5951): 395–9. Bibcode:2009Sci...326..395M. doi:10.1126/science.1174520. PMID 19833960.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Miller, G. (2006). "Optogenetics. Shining new light on neural circuits". Science. 314 (5806): 1674–6. doi:10.1126/science.314.5806.1674. PMID 17170269.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Nagel, G.; Brauner, M.; Liewald, J. F.; Adeishvili, N.; Bamberg, E.; Gottschalk, A. (2005). "Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses". Curr. Biol. 15 (24): 2279–84. doi:10.1016/j.cub.2005.11.032. PMID 16360690.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Schneider, M. B. (2008 May). "Controlling neuronal activity". The American Journal of Psychiatry. 165 (5): 562. doi:10.1176/appi.ajp.2008.08030444. PMID 18450936.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Schröder-Lang, S.; Schwärzel, M.; Seifert, R.; Strünker, Timo; et al. (2007). "Fast manipulation of cellular cAMP level by light in vivo". Nature Methods. 4 (1): 39–42. doi:10.1038/nmeth975. PMID 17128267.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Sohal, V. S.; Zhang, F.; Yizhar, O.; Deisseroth K. (2009). "Parvalbumin neurons and gamma rhythms enhance cortical circuit performance". Nature. 459 (7247): 698–702. Bibcode:2009Natur.459..698S. doi:10.1038/nature07991. PMID 19396159.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Stierl, M.; Stumpf, P.; Udwari, D.; Gueta, R.; et al. (2011). "Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa". J. Biol. Chem. 286 (2): 1181–8. doi:10.1074/jbc.M110.185496. PMC 3020725. PMID 21030594.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: unflagged free DOI (link) - Szobota, S.; Gorostiza, P.; Del Bene, F.; Wyart, Claire; et al. (2007). "Remote control of neuronal activity with a light-gated glutamate receptor". Neuron. 54 (4): 535–45. doi:10.1016/j.neuron.2007.05.010. PMID 17521567.
{{cite journal}}
: Unknown parameter|month=
ignored (help)
- Tecuapetla, F. (2010-05-19). "Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens". Journal of Neuroscience. 30 (20): 7105–10. doi:10.1523/JNEUROSCI.0265-10.2010. PMID 20484653.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Toni, N.; Laplagne, D. A.; Zhao, C.; Lombardi, Gabriela; et al. (2008). "Neurons born in the adult dentate gyrus form functional synapses with target cells". Nat. Neurosci. 11 (8): 901–7. doi:10.1038/nn.2156. PMC 2572641. PMID 18622400.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Tønnesen, J. (2009-07-21). "Optogenetic control of epileptiform activity". Proceedings of the National Academy of Sciences of the United States of America. 106 (29): 12162–7. Bibcode:2009PNAS..10612162T. doi:10.1073/pnas.0901915106. PMC 2715517. PMID 19581573.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)
- Wang, S.; Szobota, S.; Wang, Y.; Volgraf, Matthew; et al. (2007). "All optical interface for parallel, remote, and spatiotemporal control of neuronal activity". Nano Lett. 7 (12): 3859–63. Bibcode:2007NanoL...7.3859W. doi:10.1021/nl072783t. PMID 18034506.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Wang, H.; Peca, J.; Matsuzaki, M.; Matsuzaki, K.; et al. (2007). "High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice". Proc. Natl. Acad. Sci. U.S.A. 104 (19): 8143–8. Bibcode:2007PNAS..104.8143W. doi:10.1073/pnas.0700384104. PMC 1876585. PMID 17483470.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Wang, Y. (2010-04-14). "Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons". Journal of Neuroscience. 30 (15): 5334–45. doi:10.1523/JNEUROSCI.5963-09.2010. PMC 2919857. PMID 20392955.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Weick, J. P. (2010 Nov). "Functional control of transplantable human ESC-derived neurons via optogenetic targeting". Stem cells (Dayton, Ohio). 28 (11): 2008–16. doi:10.1002/stem.514. PMC 2988875. PMID 20827747.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Yazawa, M. (2009 Oct). "Induction of protein-protein interactions in live cells using light". Nature Biotechnology. 27 (10): 941–5. doi:10.1038/nbt.1569. PMID 19801976.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Zemelman, B. V.; Lee, G. A.; Ng, M.; Miesenböck, G. (2002). "Selective photostimulation of genetically chARGed neurons". Neuron. 33 (1): 15–22. doi:10.1016/S0896-6273(01)00574-8. PMID 11779476.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Zemelman, B. V.; Nesnas, N.; Lee, G. A.; Miesenböck, G. (2003). "Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons". Proc. Natl. Acad. Sci. USA. 100 (3): 1352–7. Bibcode:2003PNAS..100.1352Z. doi:10.1073/pnas.242738899. PMC 298776. PMID 12540832.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Zhang, F.; Wang, L. P.; Boyden, E. S.; Deisseroth, K. (2006). "Channelrhodopsin-2 and optical control of excitable cells". Nat. Methods. 3 (10): 785–92. doi:10.1038/nmeth936. PMID 16990810.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Zhang, F.; Wang, L. P.; Brauner, M.; Liewald, Jana F.; et al. (2007). "Multimodal fast optical interrogation of neural circuitry". Nature. 446 (7136): 633–9. Bibcode:2007Natur.446..633Z. doi:10.1038/nature05744. PMID 17410168.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Zhang, F.; Aravanis, A. M.; Adamantidis, A.; de Lecea, L.; Deisseroth, K. (2007). "Circuit-breakers: optical technologies for probing neural signals and systems". Nat. Rev. Neurosci. 8 (8): 577–81. doi:10.1038/nrn2192. PMID 17643087.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Zhang, Y. P.; Holbro, N.; Oertner, T. G. (2008). "Optical induction of plasticity at single synapses reveals input-specific accumulation of alphaCaMKII". Proc. Natl. Acad. Sci. U.S.A. 105 (33): 12039–44. Bibcode:2008PNAS..10512039Z. doi:10.1073/pnas.0802940105. PMC 2575337. PMID 18697934.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Zhang, F.; Prigge, M.; Beyrière, F.; Tsunoda, Satoshi P; et al. (2008). "Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri". Nat. Neurosci. 11 (6): 631–3. doi:10.1038/nn.2120. PMC 2692303. PMID 18432196.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Zhang, F. (2010). "Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures". Nature protocols. 5 (3): 439–56. doi:10.1038/nprot.2009.226. PMID 20203662.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Zhang, J. (2009 Oct). "Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue". Journal of neural engineering. 6 (5): 055007. Bibcode:2009JNEng...6e5007Z. doi:10.1088/1741-2560/6/5/055007. PMC 2921864. PMID 19721185.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Zhao, S. (2008 Aug). "Improved expression of halorhodopsin for light-induced silencing of neuronal activity". Brain cell biology. 36 (1–4): 141–54. doi:10.1007/s11068-008-9034-7. PMC 3057022. PMID 18931914.
{{cite journal}}
: Check date values in:|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Zhu, P. (2009-12-11). "Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System". Frontiers in neural circuits. 3: 21. doi:10.3389/neuro.04.021.2009. PMC 2805431. PMID 20126518.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)CS1 maint: unflagged free DOI (link) - Zimmermann, G. (2009). Nitabach, Michael N. (ed.). "Manipulation of an innate escape response in Drosophila: photoexcitation of acj6 neurons induces the escape response". PLoS ONE. 4 (4): e5100. Bibcode:2009PLoSO...4.5100Z. doi:10.1371/journal.pone.0005100. PMC 2660433. PMID 19340304.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)CS1 maint: unflagged free DOI (link)
External links
- Optogenetics Resource Center, maintained by the Deisseroth lab.
- Synthetic Neurobiology Group, MIT, the portal of the Boyden lab.
- OpenOptogenetics.org, an optogenetics wiki, and its companion blog.
- Molecular Neurogenetics and Optophysiology Laboratory,"Optogenetic activation and silencing recordings of individual prefrontal cortical neurons in vivo and in vitro.
- Sohal lab portal
- Nurmikko lab portal
- Lab of Dr. Zhuo-Hua Pan
- Optophysiology at the Tyler lab
- Video: Ed Boyden on Optogenetics -- selective brain stimulation with light (SPIE Newsroom, April 2011)