Jump to content

Blocked rotor test

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 117.211.90.154 (talk) at 01:30, 18 November 2013. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Blocked rotor test is conducted on an induction motor. It is also known as short circuit test or locked rotor test or stalled torque test.[1] From this test short circuit current at normal voltage, power factor on short circuit, total leakage reactance, starting torque of the motor can be found.[2][3] The test is conducted at low voltage because if the applied voltage was normal voltage then the current flowing through the stator windings were high enough to over heat the winding and damage them.[4] The blocked rotor torque test is not performed on a wound rotor motors because the starting torque can be varied as desired. However, blocked rotor current test is conducted on squirrel cage rotor motors.[5]

Method

In the blocked rotor test, the rotor is locked.[6] A low voltage is applied on the stator terminals so that full load current flows in the stator winding. The current, voltage and power input are measured at this point. When the rotor is stationary the slip, .[7] The test is conducted at the rated frequency as recommended by IEEE. This is because the rotor's effective resistance at low frequency may differ at high frequency.[8][9] The test can be repeated for different values of voltage to ensure the values obtained are consistent. As the current flowing through the stator may exceed the rated current, the test should be conducted quickly.[10] By using the parameters found by this test, the motor circle diagram can be constructed.[11]

Calculations involved

Short circuit current at normal voltage

is the short circuit current at voltage
is the short circuit current at normal voltage

Short circuit power factor

is the total input power on short circuit
is the line voltage on short circuit
is the line current on short circuit
is the short circuit power factor
[12]

Leakage reactance

is the short circuit impedance as referred to stator
is the leakage reactance per phase as referred to stator

is the total copper loss
is the core loss


See also

References

  1. ^ "Motor testing methods". Electronic Systems of Wisconsin, Inc.
  2. ^ "Blocked rotor test". Sakshat virtual labs.
  3. ^ de Swardt, Henk. "The Locked rotor test explained" (PDF). Marthinusen & Coutts (Pty.) Ltd. {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ "Motor testing methods". Electronic Systems of Wisconsin, Inc.
  5. ^ Industrial Power Engineering and Applications Handbook. Newnes.
  6. ^ "Blocked rotor test". Sakshat virtual labs.
  7. ^ B.L. Theraja, A.K. Theraja (2010). Electrical Technology volume 2 (Twenty third revised multicolour ed.). S. Chand. p. 1317. ISBN 81-219-2437-5.
  8. ^ Knight, Dr Andy. "Electrical Machines". Department of Electrical and Computer engineering, University of Alberta.
  9. ^ Pitis, CD. "femco squirrel.doc". Femco mining motors. {{cite journal}}: Cite journal requires |journal= (help); Unknown parameter |https://docs.google.com/viewer?a= ignored (help)
  10. ^ "Motor testing methods". Electronic Systems of Wisconsin, Inc.
  11. ^ Deshpande, M.V. Electrical Machines. PHI Learning Pvt. Ltd.
  12. ^ Deshpande, M.V. Electrical Machines. PHI Learning Pvt. Ltd.