User:Lbockhorn/sandbox
Child and Maternal Nutrition
Infants, children, and developing infants have their own individual nutritional needs for proper growth and child development. In tandem with the needs of developing fetuses, prenatal nutrition has special requirements to optimize the growth of the growing baby. Understanding maternal and child malnutrition examines both undernutrition and the growing problem of obesity, because they have immense consequences for survival, acute and chronic disease incidence, normal growth and economic productivity of individuals.[1]
When mothers do not receive proper nutrition, it threatens the wellness and potential of their children.[2] Well-nourished women are less likely to experience risks of birth and are more likely to deliver children who will develop well physically and mentally.[2] When young girls have poor nutrition status, it affects their capabilities and threatens their chance of bearing healthy children in the future.[2] Maternal undernutrition increases the chances of low-birth weight, which can increase the risk of infections and asphyxia, contributing to the probability of neonatal deaths.[3] Growth failure during intrauterine conditions associated with improper mother nutrition, can contribute to lifelong health complications.[4] Approximately 13 million children are born with intrauterine growth restriction annually.[5] Improvement of breast feeding practices, like adequate and timely feeding for two years of life could save the life of 1.5 million children annually.[6]
Childhood malnutrition is common and contributes to the global burden of disease.[7] According to the World Health Organization, in 2011, 6.9 million children under 5 died of preventable diseases and neonatal conditions, one third of which were associated with poor nutrition.[4] Childhood is a particularly important time to achieve good nutrition status, because poor nutrition has the capability to lock a child in a vicious cycle of disease susceptibility and recurring sickness, which threatens cognitive and social development.[2] Undernutrition and bias in access to food and health services leaves children less likely to attend or perform well in school.[2] According to estimations at UNICEF, hunger will be responsible for 5.6 million deaths of children under the age of five per year.[2]
Elderly Nutrition
Malnutrition
Malnutrition refers to insufficient, excessive, or imbalanced consumption of nutrients. In developed countries, the diseases of malnutrition are most often associated with nutritional imbalances or excessive consumption. Although there are more people in the world who are malnourished due to excessive consumption, according to the United Nations World Health Organization, the real challenge in developing nations today, more than starvation, is combating insufficient nutrition – the lack of nutrients necessary for the growth and maintenance of vital functions.
The causes of malnutrition are directly linked to inadequate macronutrient consumption and disease, and are indirectly linked to factors like “household food security, maternal and child care, health services, and the environment.” [4]
Individual nutrition challenges
Illnesses caused by improper nutrient consumption
Mental agility
Research indicates that improving the awareness of nutritious meal choices and establishing long-term habits of healthy eating has a positive effect on a cognitive and spatial memory capacity, potentially increasing a student's potential to process and retain academic information. [citation needed]
Some organizations have begun working with teachers, policymakers, and managed foodservice contractors to mandate improved nutritional content and increased nutritional resources in school cafeterias from primary to university level institutions. Health and nutrition have been proven to have close links with overall educational success.[11] Currently less than 10% of American college students report that they eat the recommended five servings of fruit and vegetables daily.[12] Better nutrition has been shown to have an impact on both cognitive and spatial memory performance; a study showed those with higher blood sugar levels performed better on certain memory tests.[13] In another study, those who consumed yogurt performed better on thinking tasks when compared to those who consumed caffeine free diet soda or confections.[14] Nutritional deficiencies have been shown to have a negative effect on learning behavior in mice as far back as 1951.[15]
- "Better learning performance is associated with diet induced effects on learning and memory ability".[16]
The "nutrition-learning nexus" demonstrates the correlation between diet and learning and has application in a higher education setting.
- "We find that better nourished children perform significantly better in school, partly because they enter school earlier and thus have more time to learn but mostly because of greater learning productivity per year of schooling."[17]
- 91% of college students feel that they are in good health while only 7% eat their recommended daily allowance of fruits and vegetables.[12]
- More "engaged" learning models that encompass nutrition is an idea that is picking up steam at all levels of the learning cycle.[19]
There is limited research available that directly links a student's Grade Point Average (G.P.A.) to their overall nutritional health. Additional substantive data is needed to prove that overall intellectual health is closely linked to a person's diet, rather than a correlation fallacy.
Mental disorders
Nutritional supplement treatment may be appropriate for major depression, bipolar disorder, schizophrenia, and obsessive compulsive disorder, the four most common mental disorders in developed countries.[20] Supplements that have been studied most for mood elevation and stabilization include eicosapentaenoic acid and docosahexaenoic acid (each of which are an omega-3 fatty acid contained in fish oil, but not in flaxseed oil), vitamin B12, folic acid, and inositol.
Cancer
Cancer has recently become common in developing countries. According a study by the International Agency for Research on Cancer, "In the developing world, cancers of the liver, stomach and esophagus were more common, often linked to consumption of carcinogenic preserved foods, such as smoked or salted food, and parasitic infections that attack organs." Lung cancer rates are rising rapidly in poorer nations because of increased use of tobacco. Developed countries "tended to have cancers linked to affluence or a 'Western lifestyle' – cancers of the colon, rectum, breast and prostate – that can be caused by obesity, lack of exercise, diet and age."[21]
A comprehensive worldwide report, Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective, compiled by the World Cancer Research Fund and the American Institute for Cancer Research, reports that there is a significant relation between lifestyle (including food consumption) and cancer prevention. The same report recommends eating mostly foods of plant origin and aiming to meet nutritional needs through diet alone, while limiting consumption of energy-dense foods, red meat, alcoholic drinks and salt and avoiding sugary drinks, processed meat and moldy cereals (grains) or pulses (legumes).
Metabolic syndrome and obesity
Several lines of evidence indicate lifestyle-induced hyperinsulinemia and reduced insulin function (i.e. insulin resistance) as decisive factors in many disease states. For example, hyperinsulinemia and insulin resistance are strongly linked to chronic inflammation, which in turn is strongly linked to a variety of adverse developments such as arterial microinjuries and clot formation (i.e. heart disease) and exaggerated cell division (i.e. cancer).[22] Hyperinsulinemia and insulin resistance (the so-called metabolic syndrome) are characterized by a combination of abdominal obesity, elevated blood sugar, elevated blood pressure, elevated blood triglycerides, and reduced HDL cholesterol.
Obesity can unfavourably alter hormonal and metabolic status via resistance to the hormone leptin, and a vicious cycle may occur in which insulin/leptin resistance and obesity aggravate one another. The vicious cycle is putatively fuelled by continuously high insulin/leptin stimulation and fat storage, as a result of high intake of strongly insulin/leptin stimulating foods and energy. Both insulin and leptin normally function as satiety signals to the hypothalamus in the brain; however, insulin/leptin resistance may reduce this signal and therefore allow continued overfeeding despite large body fat stores.
There is a debate about how and to what extent different dietary factors – such as intake of processed carbohydrates, total protein, fat, and carbohydrate intake, intake of saturated and trans fatty acids, and low intake of vitamins/minerals – contribute to the development of insulin and leptin resistance. Evidence indicates that diets possibly protective against metabolic syndrome include low saturated and trans fat intake and foods rich in dietary fiber, such as high consumption of fruits and vegetables and moderate intake of low-fat dairy products.[23]
Hyponatremia
Excess water intake, without replenishment of sodium and potassium salts, leads to hyponatremia, which can further lead to water intoxication at more dangerous levels. A well-publicized case occurred in 2007, when Jennifer Strange died while participating in a water-drinking contest.[24] More usually, the condition occurs in long-distance endurance events (such as marathon or triathlon competition and training) and causes gradual mental dulling, headache, drowsiness, weakness, and confusion; extreme cases may result in coma, convulsions, and death. The primary damage comes from swelling of the brain, caused by increased osmosis as blood salinity decreases. Effective fluid replacement techniques include Water aid stations during running/cycling races, trainers providing water during team games such as Soccer and devices such as Camel Baks which can provide water for a person without making it too hard to drink the water.
Global nutrition challenges
Nutrition indicators
For organizations like UNICEF, monitoring rates of underweight, low birthweight, exclusive breastfeeding, iodized iodine consumption, vitamin a supplementation, and iron deficiency and anemia are all indicators of nutrition status. Children born at low birthweight (less that 5.5 pounds), are less likely to be healthy and are more susceptible to disease and early death.[2] Those born at low birthweight also are likely to have a depressed immune system, which can increase their chances of heart disease and diabetes later on in life.[2] Because 96% of low birthweight occurs in the developing world, this nutritional standard reflects an increased likelihood of having been born to a mother in poverty with poor nutritional status that has had to perform demanding labor.[2] Exclusive breasfeeding often indicates nutritional status because infants that consume breast milk are more likely to receive all adequate nourishment and nutrients that will help their developing body and immune system, leaving them less likely to contract diarrheal diseases and respiratory infections.[2] Iodine-deficient diets can interfere with adequate thyroid hormone production, which is responsible for normal growth in the brain and nervous system, which ultimately leads to poor school performance and impaired intellectual capabilities.[2] Vitamin A plays an essential role in developing the immune system in children, therefore, it is considered an essential micronutrient that can greatly affect health.[2] However, because of the expense of testing for deficiencies, many developing nations have been able to fully report vitamin a deficiency, leaving vitamin A deficiency considered a silent hunger.[2] Anemia, especially iron-deficient anemia, is critical for cognitive developments in children, and its presence leads to maternal deaths and poor brain and motor development in children.[2]
Death and disability
Infectious Disease
Poor nutrition leaves children and adults more susceptible to contracting life threatening diseases such as diarrheal infections and respiratory infections.[2] According to the WHO, in 2011, 6.9 million children died of infectious diseases like pneumonia, diarrhea, malaria, and neonatal conditions, of which at least one third were associated with undernutrition.[25][26][27]
Non-infectious disease
According to WHO reports, the most common and highly prevalent non-infectious diseases that affect people worldwide, and have the highest contribution to the global mortality rate are cardiovascular diseases, various cancers, diabetes and chronic respiratory problems all of which are linked to poor nutrition.
Child malnutrition
According to UNICEF, in 2011, 101 million children across the globe were underweight and 165 million were stunted in growth.[28] “At the same time, about 43 million children under 5 were overweight or obese…Nearly 20 million children under 5 suffer from severe acute malnutrition, a life-threatening condition requiring urgent treatment.” [4]
Under nutrition
UNICEF defines under nutrition “as the outcome of insufficient food intake (hunger) and repeated infectious diseases. Under nutrition includes being underweight for one’s age, too short for one’s age (stunted), dangerously thin (wasted), and deficient in vitamins and minerals (micronutrient malnutrient).[2] Under nutrition causes 53% of deaths of children under five across the world.[2] The Maternal and Child Nutrition Study Group estimate that under nutrition, “including fetal growth restriction, stunting, wasting, deficiencies of vitamin A and zinc along with suboptimum breastfeeding- is a cause of 3.1 million child deaths and infant mortality, or 45% of all child deaths in 2011”.[1] Under nutrition can accumulate deficiencies in health which results in less productive individuals and societies [2]
When humans are undernourished, they no longer maintain normal bodily functions, such as growth, resistance to infection, or have satisfactory performance in school or work.[2] Major causes of under nutrition in young children include lack of proper breast feeding for infants and illnesses such as diarrhea, pneumonia, malaria, and HIV/AIDS.[2] According to UNICEF 146 million children across the globe, that one out of four under the age of five, are underweight.[2] The amount of underweight children has decreased since 1990, from 33 percent to 28 percent between 1990 and 2004.[2] Stunted children are more susceptible to infection, more likely to fall behind in school, more likely to become overweight and develop non-infectious diseases, and ultimately earn less than their non-stunted coworkers.[29]
Adult overweight and obesity
Malnutrition in industrialized nations is primarily due to excess calories and non-nutritious carbohydrates, which has contributed to the obesity epidemic most developed nations and some developing nations face. [30] In 2008, 35% of adults above the age of 20 years old were overweight (BMI 25 kg/m), a prevalence that has doubled worldwide between 1980 and 2008.[31] Being overweight as a child has become an increasingly important indicator for later development of obesity and non-infectious diseases such as obesity and heart disease.[1] In several western European nations, the prevalence of overweight and obese children rose by 10% from 1980 to 1990, a rate that has only accelerated lately. [2]
Vitamin and mineral malnutrition
The large prevalence of micronutrient deficiencies globally causes immense social consequences for adults and children. The WHO estimates that 190 million children under 5 are vitamin A deficient, with 5.2 million affected by night blindness. [32] Severe vitamin A deficiency (VAD) for developing children can result in visual impairments, anemia and weakened immunity, and increase their risk of morbidity and mortality from infectious disease. [33] This also presents a problem for women specifically, with WHO estimating that 9.8 million women are affected by night blindness.[34] Iron deficiency is the most common inadequate nutrient worldwide, affecting approximately 2 billion people.[35] Iron deficiency can have a devastating effect on children and mothers. According to WHO estimates that there exists 469 million women of reproductive age and approximately 600 million preschool and school-age children worldwide who are anemic.[36] Infants are children are more likely to develop anemia due to their increased iron requirements for growth.[37] Health consequences for iron deficiency in young children include increased perinatal mortality, delayed mental and physical development, negative behavioral consequences, reduced auditory and visual function, and impaired physical performance.[38] “Some of the negative effects of iron deficiency during early childhood are irreversible and can lead to poor school performance, reduced physical work capacity and decreased productivity later in life”.[4] Maternal short stature and iron deficiency anemia, which can increase the chances of maternal mortality, contribute to at least 18% of maternal deaths in low- and middle income countries. [39] Because teenage girls and women lose iron during menstruation, and rarely supplement it in their diet, they are very susceptible to iron-deficient anemia. [4]
Iron deficiency and anaemia
Vitamin A deficiency
Iodine deficiency
====Infant and young child feeding====
Undernourishment
International food insecurity and malnutrition
According to UNICEF, South Asia has the highest levels of underweight children under five, followed by sub-Saharan Africans nations, with Industrialized counties and Latin nations having the lowest rates.[2]
United States
Prevalence
In the United States, 2% of children are underweight, with under 1% stunted and 6% are wasting. [2]
Effects
Policies
In the US, dietitians are registered (RD) or licensed (LD) with the Commission for Dietetic Registration and the American Dietetic Association, and are only able to use the title "dietitian," as described by the business and professions codes of each respective state, when they have met specific educational and experiential prerequisites and passed a national registration or licensure examination, respectively. In California, registered dietitians must abide by the "Business and Professions Code of Section 2585-2586.8".Anyone may call themselves a nutritionist, including unqualified dietitians, as this term is unregulated. Some states, such as the State of Florida, have begun to include the title "nutritionist" in state licensure requirements. Most governments provide guidance on nutrition, and some also impose mandatory disclosure/labeling requirements for processed food manufacturers and restaurants to assist consumers in complying with such guidance.
In the US, nutritional standards and recommendations are established jointly by the US Department of Agriculture and US Department of Health and Human Services. Dietary and physical activity guidelines from the USDA are presented in the concept of a food pyramid, which superseded the Four Food Groups. The Senate committee currently responsible for oversight of the USDA is the Agriculture, Nutrition and Forestry Committee. Committee hearings are often televised on C-SPAN as seen here.
The U.S. Department of Health and Human Services provides a sample week-long menu which fulfills the nutritional recommendations of the government.[40] Canada's Food Guide is another governmental recommendation.
Industrialized countries
According to UNICEF, the Commonwealth of Independent States has the lowest rates of stunting and wasting, at 14 percent and 3 percent.[2] The nations of Estonia, Finland, Iceland, Lithuania and Sweden have the lowest prevalence of low birthweight children in the world- at 4%. .[2] Proper prenatal nutrition is responsible for this small prevalence of low birthweight infants. .[2] However, low birthweight rates are increasing, due to the use of fertility drugs, resulting in multiple births, women bearing children at an older age, and the advancement of technology allowing more pre-term infants to survive. [2] Malnutrition is more prevalent in industrialized nations in the form of over-nutrition from excess calories and non-nutritious carbohydrates that have contributed to the obesity epidemic most of these nations now face. [30] Disparities, according to gender, geographic location and socio-economic position, both within and between countries, represent the biggest threat to child nutrition in industrialized countries. These disparities are a direct product of social inequalities and social inequalities are rising throughout the industrialized world, particularly in some countries of eastern Europe.” .[2]
South Asia has the highest percentage and number of underweight children under five in the world, with approximately 78 million children.[2] Patterns of stunting and wasting are similar, where 44% have not reached optimal height and 15% are wasted, rates much higher than any other regions.[2] This region of the world has extremely high rates of child underweight- 46% of its child population under five is underweight. [2] India, Bangladesh, and Pakistan alone account for half the globe’s underweight child population. [2] There has been progress towards the MDGs in the region, where the rate has decreased from 53% since 1990, however, as a whole the rate of 1.7% decrease of underweight will not be sufficient to meet the 2015 goal. [2] Some nations, such as Afghanistan, Bangladesh, and Sri Lanka, on the other hand, have made significant improvements, all decreasing their prevalence by half in ten years. [2] While India and Pakistan have made modest improvements, Nepal has made no significant improvement in underweight child prevalence. [2] Other forms of undernutrition have continued to persist with high resistance to improvement, such as the prevalence of stunting and wasting, which has not changed significantly in the past 10 years. [2] Causes of this poor nutrition include energy-insufficient diets, poor sanitation conditions, and the gender disparities in educational and social status. [2] Girls and women face discrimination especially in nutrition status, where South Asia is the only region in the world where girls are more likely to be underweight than boys. .[2]
Eastern/South Africa
The Eastern and Southern African nations have shown no improvement since 1990 in the rate of underweight children under five.[2] They have also made no progress in halving hunger by 2015, the most prevalent Millennium Development Goal.[2] This is due primarily to the prevalence of famine, declined agricultural productivity, food emergencies, drought, conflict, and increased poverty.[2] This, in combination with HIV/AIDS, has posed a threat to the nutrition development of nations such as Lesotho, Malawi, Mozambique, Swaziland, Zambia and Zimbabwe.[2] Botswana has made remarkable achievements in reducing underweight prevalence, dropping 4% in 4 years, despite its place as the second leader in HIV prevalence amongst adults in the globe.[2] South Africa, the wealthiest nation in this region, has the second lowest proportion of underweight children at 12%, but have been steadily increasing in underweight prevalence since 1995.[2] Almost half of Ethiopian children are underweight, and along with Nigeria, they account for almost one-third of the underweight under five in all of Sub-Saharan Africa.
West/Central Africa
West/Central Africa has the highest rate of children under five underweight in the world.[2] Of the countries in this region, the Congo has the lowest rate at 14%, while the nations of Democratic Republic of the Congo, Ghana, Guinea, Mali, Nigeria, Senegal and Togo are improving slowly.[2] In Gambia, rates decreased from 26% to 17% in four years, and their coverage of vitamin A supplementation reaches 91% of vulnerable populations.[2] This region has the next highest proportion of wasted children, with 10% of the population under five not at optimal weight.[2] Little improvement has been made between the years of 1990 and 2004 in reducing the rates of underweight children under five, whose rate stayed approximately the same.[2] Sierra Leone has the highest child under five mortality rate in the world, due predominantly to its extreme infant mortality rate, at 238 deaths per 1000 live births.[2] Other contributing factors include the high rate of low birthweight children (23%) and low levels of exclusive breast feeding (4%).[2] Anemia is prevalent in these nations, with unacceptable rates of iron deficient anemia.[2] The nutritional status of children is further indicated by its high rate of child wasting - 10%: Wasting is a significant problem in Sahelian countries – Burkina Faso, Chad, Mali, Mauritania and Niger – where rates fall between 11% and 19% of under fives, affecting more than 1 million children.[2]
Six countries in this region are on target to meet goals for underweight children by 2015, and 12 countries have prevalence rates below 10%.[2] However, the nutrition of children in the region as a whole has degraded for the past ten years due to the portion of underweight children increasing in three populous nations - Iraq, Sudan, and Yemen.[2] Forty six percent of all children in Yemen are underweight, a percentage that has worsened by 4% since 1990.[2] In Yemen, 53% of children under five are stunted and 32% are born at low birth weight.[2] Sudan has an underweight prevalence of 41%, and the highest proportion of wasted children in the region at 16%.[2] One percent of households in Sudan consume iodized salt.[2] Iraq has also seen an increase in child underweight since 1990.[2] Djibouti, Jordan, the Occupied Palestinian Territory (OPT), Oman, the Syrian Arab Republic and Tunisia are all projected to meet minimum nutrition goals, with OPT, Syrian AR, and Tunisia the fastest improving regions.[2] This region demonstrates that undernutrition does not always improve with economic prosperity, where the United Arab Emirates, for example, despite being a wealthy nation, has similar child death rates due to malnutrition to those seen in Yemen.[2]
East Asia/Pacific
The East Asia/Pacific region has reached its goals on nutrition, in part due to the improvements contributed by China, the region’s most populous country.[2] China has reduced its underweight prevalence from 19 percent to 8 percent between 1990 and 2002. [2] This reduction of underweight prevalence has aided in the lowering of the under 5 mortality rate from 49 to 31 of 1000. They also have a low birthweight rate to 4%, a rate comparable to industrialized countries, and over 90% of households receive adequate iodized salts.[2] However, large disparities exist between children in rural and urban areas, where 5 provinces in China leave 1.5 million children iodine deficient and susceptible to diseases.[2] Singapore, Vietnam, Malaysia, and Indonesia are all projected to reach nutrition MDGs. [2] Singapore has the lowest under five mortality rate of any nation, besides Iceland, in the world, at 3%.[2] Cambodia has the highest rate of child mortality in the region (141 per 1,000 live births), while still its proportion of underweight children increased by 5 percent to 45% in 2000. Further nutrient indicators show that only 12 per cent of Cambodian babies are exclusively breastfed and only 14 per cent of households consume iodized salt.[2]
This region has undergone the fastest progress in decreasing poor nutrition status of children in the world.[2] The Latin American region has reduced underweight children prevalence by 3.8% every year between 1990 and 2004, with a current rate of 7% underweight.[2] They also have the lowest rate of child mortality in the developing world, with only 31 per 1000 deaths, and the highest iodine consumption.[2] Cuba has seen improvement from 9 to 4 percent underweight under 5 between 1996 and 2004.[2] The prevalence has also decreased in the Dominican Republic, Jamaica, Peru, and Chile.[2] Chile has a rate of underweight under 5, at merely 1%.[2] The most populous nations, Brazil and Mexico, mostly have relatively low rates of underweight under 5, with only 6% and 8%.[2] Guatemala has the highest percentage of underweight and stunted children in the region, with rates above 45%.[2] There are disparities amongst different populations in this region. For example, children in rural areas have twice the prevalence of underweight at 13%, compared to urban areas at 5%.[2]
Nutrition Access Disparities
Socioeconomic status
In all regions of the world, lack of proper nutrition is both a consequence and cause of poverty.[2] Internationally, impoverished individuals are less likely to have access to nutritious food, and are more vulnerable to struggle harder to come out of poverty than those who have healthy diets.[2] According to UNICEF, children living in the poorest households are twice as likely to be underweight as those in the richest.[2] Disparities in socieo-economic status, between and within nations, provide the largest threat to child nutrition in industrialized nations, where social inequality is on the rise. [41]
Location
Rural populations
According to UNICEF, children in rural locations are more than twice as likely to be underweight as compared to children under five in urban areas.[2] In Latin American/Caribbean nations, “Children living in rural areas in Bolivia, Honduras, Mexico and Nicaragua are more than twice as likely to be underweight as children living in urban areas. That likelihood doubles to four times in Peru.” [2]
Urban populations
Minorities
In the United States, the incidence of low birthweight is on the rise amongst all populations, but particularly amongst minorities. [42]
Special needs
Gender
According to UNICEF, boys and girls have almost identical rates of underweight children under 5 across the world, except for in South Asia.[2]
Food and Nutrition Policy and Programs
Nutrition will play an influential role in progress towards meeting the Millennium Goals of eradicating hunger and poverty through health and education.[2] Emergencies and crises often exacerbate undernutrition, due to the environment of the aftermath of crises that include food insecurity, poor health resources, unhealthy environments, and poor care practices.[2] Therefore, the aftermath of natural disasters and other emergencies can exponentially increase the rates of macro and micronutrient deficiencies in populations.[2]
Nutrition interventions
Nutrition interventions take a multi-faceted approach to improve the nutrition status of various diverse populations. Policy and programming must target both individual behavioral changes and public policy approaches to public health. While most nutrition interventions focus on delivery through the health-sector, non-health sector interventions targeting agriculture, water and sanitation, and education are important as well.[4] Global nutrition micro-nutrient deficiencies often receive large-scale solution approaches aimed at massive public policy approaches. For example, in 1990, iodine deficiency was particularly prevalent, with one in five households, or 1.7 billion people, not consuming adequate iodine, leaving them at risk to develop associated diseases. [2] Therefore, a global campaign to iodize salt to eliminate iodine deficiency successfully boosted the rate to 69% of households in the world consuming adequate amounts of iodine.[2] Disaster relief interventions often take a multi-faceted approach, but one that takes a widespread approach to facilitate health, rather than targeting individual behavior. UNICEF’s programming targeting nutrition services amongst disaster settings include nutrition assessments, measles immunization, vitamin A supplementation, provision of fortified foods and micronutrient supplements, support for breastfeeding and complementary feeding for infants and young children, and therapeutic and supplementary feeding.[2] For example, during Nigeria’s food crisis of 2005, 300,000 children received therapeutic nutrition feeding programs through the collaboration of UNICEF, the Niger government, the World Food Programme, and 24 NGOs utilizing community and facility based feeding schemes.[2]
Interventions aimed at pregnant women, infants, and children take a behavioral and program-based approach. Behavioral intervention objectives include promoting proper breast-feeding, the immediate initiation of breastfeeding, and its continuation through 2 years and beyond.[4] UNICEF recognizes that to promote these behaviors, healthful environments must be established conducive to promoting these behaviors, like healthy hospital environments, skilled health workers, support in the public and workplace, and removing negative influences.[4] Finally, other interventions include provisions of adequate micro and macro nutrients such as iron, anemia, and vitamin A supplements and vitamin-fortified foods and ready-to-use products.[4] Programs addressing micro-nutrient deficiencies, such as those aimed at anemia, have attempted to provide iron supplementation to pregnant and lactating women. However, because supplementation often occurs too late, these programs have had little impact.[2]
Impact
China played the largest role in decreasing the rate of children under five underweight between 1990 and 2004, halving the prevalence.[2] In maternal health promotion programs, “A Cochrane review on community-based integrated packages to improve maternal and neonatal health found that community-based programming had a positive impact on the initiation of breastfeeding within one hour of birth.[43] Some programs have had adverse effects. One example is the “Formula for Oil” relief program in Iraq, which replaced breast feeding in women and has left a poor legacy for infant nutrition. [2]
Implementation and delivery platforms
While most nutrition interventions are delivered directly through health services, other sectors such as agriculture, water and sanitation, and education, are vital as well.[4] In April 2010, the World Bank and the IMF released a policy briefing entitled “Scaling up Nutrition (SUN): A Framework for action” that represented a partnered effort to address the Lancet’s Series on under nutrition, and the goals it set out for improving under nutrition.[44] They emphasized the 1000 days after birth as the prime window for effective nutrition intervention, encouraging programming that was cost-effective and showed significant cognitive improvement in populations, as well as enhanced productivity and economic growth.[44] This document was labeled the SUN framework, and was launched by the UN General Assembly in 2010 as a road map encouraging the coherence of stakeholders like governments, academia, UN system organizations and foundations in working towards reducing under nutrition.[44] The SUN framework has initiated a transformation in global nutrition- calling for country-based nutrition programs, increasing evidence based and cost–effective interventions, and “integrating nutrition within national strategies for gender equality, agriculture, food security, social protection, education, water supply, sanitation, and health care”.[44] Governmental often plays a role in implementing nutrition programs through policy. For instance, several East Asian nations have enacted legislation to increase iodization of salt to increase household consumption. [2] Market and industrial production can play a role as well. For example, in the Philippines, improved production and market availability of iodized salt increased household consumption. [2]
Nutrition Education
Nutrition is taught in schools in many countries. In England and Wales the Personal and Social Education and Food Technology curricula include nutrition, stressing the importance of a balanced diet and teaching how to read nutrition labels on packaging. In many schools a Nutrition class will fall within the Family and Consumer Science or Health departments. In some American schools, students are required to take a certain number of FCS or Health related classes. Nutrition is offered at many schools, and if it is not a class of its own, nutrition is included in other FCS or Health classes such as: Life Skills, Independent Living, Single Survival, Freshmen Connection, Health etc. In many Nutrition classes, students learn about the food groups, the food pyramid, Daily Recommended Allowances, calories, vitamins, minerals, malnutrition, physical activity, healthy food choices and how to live a healthy life.
A 1985 US National Research Council report entitled Nutrition Education in US Medical Schools concluded that nutrition education in medical schools was inadequate.[45] Only 20% of the schools surveyed taught nutrition as a separate, required course. A 2006 survey found that this number had risen to 30%.[46]
Recommended policy
The World Health Organization represents one of the premier voices on the nutritional needs of vulnerable populations such as women and children. Reports such as “Essential Nutrition Actions”[4] provides recommendations for policy that are exemplified in current policy and seek further advancement. Examining these goals also reveals the latest research about human nutrition in social aspects. Interventions targeted at young infants aged 0-5 months, first includes recommendation to encourage early initiation of breastfeeding.[4] Though the relationship between early initiation of breast feeding and improved health outcomes has not been formally established, a recent study in Ghana suggests a causal relationship between early initiation and reduced infection-caused neo-natal deaths.[4] Next, the WHO recommends exclusive breastfeeding, which has shown to promote optimal growth, development, and health of infants.[47]
History
Humans have evolved as omnivorous hunter-gatherers over the past 250,000 years. The diet of early modern humans varied significantly depending on location and climate. The diet in the tropics tended to be based more heavily on plant foods, while the diet at higher latitudes tended more towards animal products. Analysis of postcranial and cranial remains of humans and animals from the Neolithic, along with detailed bone modification studies have shown that cannibalism was also prevalent among prehistoric humans.[48]
Agriculture developed about 10,000 years ago in multiple locations throughout the world, providing grains such as wheat, rice, maize, and potatoes, with staples such as bread, pasta, and tortillas. Farming also provided milk and dairy products, and sharply increased the availability of meats and the diversity of vegetables. The importance of food purity was recognized when bulk storage led to infestation and contamination risks. Cooking developed as an often ritualistic activity, due to efficiency and reliability concerns requiring adherence to strict recipes and procedures, and in response to demands for food purity and consistency.[49]
From antiquity to 1900
Around 3000 BC the Vedic texts had mentions of scientific research on nutrition.
The first recorded nutritional experiment is found in the Bible's Book of Daniel. Daniel and his friends were captured by the king of Babylon during an invasion of Israel. Selected as court servants, they were to share in the king's fine foods and wine. But they objected, preferring vegetables (pulses) and water in accordance with their Jewish dietary restrictions. The king's chief steward reluctantly agreed to a trial. Daniel and his friends received their diet for 10 days and were then compared to the king's men. Appearing healthier, they were allowed to continue with their diet.[50]
Around 475 BC, Anaxagoras stated that food is absorbed by the human body and therefore contained "homeomerics" (generative components), suggesting the existence of nutrients.[49] Around 400 BC, Hippocrates said, "Let food be your medicine and medicine be your food."[51]
In the 16th century, scientist and artist Leonardo da Vinci compared metabolism to a burning candle. In 1747, Dr. James Lind, a physician in the British navy, performed the first scientific nutrition experiment, discovering that lime juice saved sailors who had been at sea for years from scurvy, a deadly and painful bleeding disorder. The discovery was ignored for forty years, after which British sailors became known as "limeys." The essential vitamin C within lime juice would not be identified by scientists until the 1930s.
Around 1770, Antoine Lavoisier, the "Father of Nutrition and Chemistry" discovered the details of metabolism, demonstrating that the oxidation of food is the source of body heat. In 1790, George Fordyce recognized calcium as necessary for fowl survival. In the early 19th century, the elements carbon, nitrogen, hydrogen and oxygen were recognized as the primary components of food, and methods to measure their proportions were developed.
In 1816, François Magendie discovered that dogs fed only carbohydrates and fat lost their body protein and died in a few weeks, but dogs also fed protein survived, identifying protein as an essential dietary component.[citation needed] In 1840, Justus Liebig discovered the chemical makeup of carbohydrates (sugars), fats (fatty acids) and proteins (amino acids). In the 1860s, Claude Bernard discovered that body fat can be synthesized from carbohydrate and protein, showing that the energy in blood glucose can be stored as fat or as glycogen.
In the early 1880s, Kanehiro Takaki observed that Japanese sailors (whose diets consisted almost entirely of white rice) developed beriberi (or endemic neuritis, a disease causing heart problems and paralysis) but British sailors and Japanese naval officers did not. Adding various types of vegetables and meats to the diets of Japanese sailors prevented the disease.
In 1896, Baumann observed iodine in thyroid glands. In 1897, Christiaan Eijkman worked with natives of Java, who also suffered from beriberi. Eijkman observed that chickens fed the native diet of white rice developed the symptoms of beriberi, but remained healthy when fed unprocessed brown rice with the outer bran intact. Eijkman cured the natives by feeding them brown rice, discovering that food can cure disease. Over two decades later, nutritionists learned that the outer rice bran contains vitamin B1, also known as thiamine.
From 1900 to the present
In the early 20th century, Carl von Voit and Max Rubner independently measured caloric energy expenditure in different species of animals, applying principles of physics in nutrition. In 1906, Wilcock and Hopkins showed that the amino acid tryptophan was necessary for the survival of rats. He fed them a special mixture of food containing all the nutrients he believed were essential for survival, but the rats died. A second group of rats to which he also fed an amount of milk containing vitamins.[52] Gowland Hopkins recognized "accessory food factors" other than calories, protein and minerals, as organic materials essential to health but which the body cannot synthesize. In 1907, Stephen M. Babcock and Edwin B. Hart conducted the single-grain experiment. This experiment ran through 1911.
In 1912, Casimir Funk coined the term vitamin, a vital factor in the diet, from the words "vital" and "amine," because these unknown substances preventing scurvy, beriberi, and pellagra, were thought then to be derived from ammonia. The vitamins were studied in the first half of the 20th century.
In 1913, Elmer McCollum discovered the first vitamins, fat soluble vitamin A, and water soluble vitamin B (in 1915; now known to be a complex of several water-soluble vitamins) and named vitamin C as the then-unknown substance preventing scurvy. Lafayette Mendel and Thomas Osborne also performed pioneering work on vitamins A and B. In 1919, Sir Edward Mellanby incorrectly identified rickets as a vitamin A deficiency, because he could cure it in dogs with cod liver oil.[53] In 1922, McCollum destroyed the vitamin A in cod liver oil but found it still cured rickets, and named it vitamin D. Also in 1922, H.M. Evans and L.S. Bishop discovered vitamin E as essential for rat pregnancy, and originally called it "food factor X" until 1925.
In 1925, Hart discovered that trace amounts of copper are necessary for iron absorption. In 1927, Adolf Otto Reinhold Windaus synthesized vitamin D, for which he won the Nobel Prize in Chemistry in 1928. In 1928, Albert Szent-Györgyi isolated ascorbic acid, and in 1932 proved that it is vitamin C by preventing scurvy. In 1935 he synthesized it, and in 1937 won a Nobel Prize for his efforts. Szent-Györgyi concurrently elucidated much of the citric acid cycle.
In the 1930s, William Cumming Rose identified essential amino acids, necessary protein components which the body cannot synthesize. In 1935, Underwood and Marston independently discovered the necessity of cobalt. In 1936, Eugene Floyd Dubois showed that work and school performance are related to caloric intake. In 1938, Erhard Fernholz discovered the chemical structure of vitamin E. It was synthesised by Paul Karrer.
In 1940, rationing in the United Kingdom during and after World War II took place according to nutritional principles drawn up by Elsie Widdowson and others. In 1941, the first Recommended Dietary Allowances (RDAs) were established by the National Research Council.
In 1992, The U.S. Department of Agriculture introduced the Food Guide Pyramid. In 2002, a Natural Justice study showed a relation between nutrition and violent behavior. In 2005, a study found that obesity may be caused by adenovirus in addition to bad nutrition.[54]
See also
Further reading
- Curley, S., and Mark (1990). The Natural Guide to Good Health, Lafayette, Louisiana, Supreme Publishing
- Galdston, I. (1960). Human Nutrition Historic and Scientific. New York: International Universities Press.
- Hirschfelder, Gunther / Trummer, Manuel (2013). Food and Drink. Leibniz Institute of European History (IEG).
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Mahan, L.K. and Escott-Stump, S. eds. (2000). Krause's Food, Nutrition, and Diet Therapy (10th ed.). Philadelphia: W.B. Saunders Harcourt Brace. ISBN 0-7216-7904-8.
{{cite book}}
:|author=
has generic name (help)CS1 maint: multiple names: authors list (link) - Human Nutrition. Readings from Scientific American. San Francisco: W.H. Freeman & Co. 1978. ISBN 0-7167-0183-9Template:Inconsistent citations
{{cite book}}
: CS1 maint: postscript (link) - Thiollet, J.-P. (2001). Vitamines & minéraux. Paris: Anagramme.
- Willett, Walter C.; Stampfer, Meir J. (2003). "Rebuilding the Food Pyramid". Scientific American. 288 (1): 64–71. doi:10.1038/scientificamerican0103-64. PMID 12506426.
References
- ^ a b c Black, Robert E; Victora, Cesar G; Walker, Susan P; Bhutta, Zulfiqar A; Christian, Parul; De Onis, Mercedes; Ezzati, Majid; Grantham-Mcgregor, Sally; Katz, Joanne; Martorell, Reynaldo; Uauy, Ricardo; Maternal Child Nutrition Study Group (2013). "Maternal and child undernutrition and overweight in low-income and middle-income countries". The Lancet. 382 (9890): 427–51. doi:10.1016/S0140-6736(13)60937-X. PMID 23746772.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct Progress for Children: A Report Card on Nutrition (No. 4), UNICEF, May 2006, ISBN 978-92-806-3988-9. http://www.unicef.org/nutrition/index_33685.html
- ^ Ramakrishnan, U; Yip, R (2002). "Experiences and challenges in industrialized countries: Control of iron deficiency in industrialized countries". The Journal of nutrition. 132 (4 Suppl): 820S – 4S. PMID 11925488.
- ^ a b c d e f g h i j k l m n Cite error: The named reference
Essential Nutrition Actions
was invoked but never defined (see the help page). - ^ Black, Robert E; Allen, Lindsay H; Bhutta, Zulfiqar A; Caulfield, Laura E; De Onis, Mercedes; Ezzati, Majid; Mathers, Colin; Rivera, Juan (2008). "Maternal and child undernutrition: Global and regional exposures and health consequences". The Lancet. 371 (9608): 243. doi:10.1016/S0140-6736(07)61690-0.
- ^ Jones, Gareth; Steketee, Richard W; Black, Robert E; Bhutta, Zulfiqar A; Morris, Saul S; Bellagio Child Survival Study Group (2003). "How many child deaths can we prevent this year?". The Lancet. 362 (9377): 65–71. doi:10.1016/S0140-6736(03)13811-1. PMID 12853204.
- ^ Murray C, Lopez A (1997). "Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study". Lancet. 349 (9063): 1436–42. doi:10.1016/S0140-6736(96)07495-8. PMID 9164317.
- ^ Berardi, John. "The Big T: How Your Lifestyle Influences Your Testosterone Levels". Deepfitness.com. Retrieved 8 October 2013.
- ^ L, Winkler (1980). "Development of brain lipids in rats receiving a fat-free diet with respect to myelinization". Acta Biol Med Ger. 39 (11–12): 1197–203. PMID 7245988.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Haque, ZU (1992). "Importance of dietary cholesterol for the maturation of mouse brain myelin". Biosci Biotechnol Biochem. 56 (8): 1351–4. doi:10.1271/bbb.56.1351. PMID 1369207.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Behrman, J. R. (1996). "The Impact of Health and Nutrition on Education". The World Bank Research Observer. 11 (1): 23–37. doi:10.1093/wbro/11.1.23. JSTOR 3986477.
- ^ a b American College Health Association (2007). "American College Health Association National College Health Assessment Spring 2006 Reference Group Data Report (Abridged): The American College Health Association". Journal of American College Health. 55 (4): 195–206. doi:10.3200/JACH.55.4.195-206. PMID 17319325.
- ^ Benton, David; Sargent, Julia (1992). "Breakfast, blood glucose and memory". Biological Psychology. 33 (2–3): 207–10. doi:10.1016/0301-0511(92)90032-P. PMID 1525295.
- ^ Kanarek, Robin B.; Swinney, David (1990). "Effects of food snacks on cognitive performance in male college students". Appetite. 14 (1): 15–27. doi:10.1016/0195-6663(90)90051-9. PMID 2310175.
- ^ Whitley JR, O'Dell BL, Hogan AG (1951). "Effect of diet on maze learning in second generation rats; folic acid deficiency". J. Nutr. 45 (1): 153–60. PMID 14880969.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Umezawa M, Kogishi K, Tojo H; et al. (1999). "High-linoleate and high-alpha-linolenate diets affect learning ability and natural behavior in SAMR1 mice". J. Nutr. 129 (2): 431–7. PMID 10024623.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ a b Glewwe, Paul; Jacoby, Hanan G; King, Elizabeth M (2001). "Early childhood nutrition and academic achievement: A longitudinal analysis". Journal of Public Economics. 81 (3): 345–68. doi:10.1016/S0047-2727(00)00118-3.
- ^ Guernsey L (1993). "Many colleges clear their tables of steak, substitute fruit and pasta". Chronicle of Higher Education. 39 (26): A30.
- ^ Duster T, Waters A (2006). "Engaged learning across the curriculum: The vertical integration of food for thought". Liberal Education. 92 (2): 42.
- ^ Lakhan SE, Vieira KF (2008). "Nutritional therapies for mental disorders". Nutr J. 7 (1): 2. doi:10.1186/1475-2891-7-2. PMC 2248201. PMID 18208598.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Coren, Michael (2005-03-10). "Study: Cancer no longer rare in poorer countries". CNN. Retrieved 2007-01-01.
- ^ Fernández-García JC; et al. (2013). "Inflammation, oxidative stress and metabolic syndrome: dietary modulation". Curr Vasc Pharmacol (October): 1570–1611. PMID 24168441.
{{cite journal}}
:|access-date=
requires|url=
(help); Explicit use of et al. in:|author=
(help)CS1 maint: date and year (link) - ^ Feldeisen SE, Tucker KL (2007). "Nutritional strategies in the prevention and treatment of metabolic syndrome". Applied Physiology, Nutrition, and Metabolism. 32 (1). National Research Council of Canada Research Press: 46–60. doi:10.1139/h06-101. PMID 17332784. Retrieved November 3, 2013.
- ^ "Why is too much water dangerous?". BBC News. 2007-01-15. Retrieved 2008-11-09.
- ^ WHO. Child epidemiology, published on the website of the WHO Department of Maternal, Newborn, Child and Adolescent Health (http://www.who.int/maternal_child_ adolescent/epidemiology/child/en/index.html, accessed 2 July 2012).[dead link ]
- ^ WHO. World health statistics 2013: a wealth of information on global public health. Geneva, WHO, 2013.[page needed]
- ^ Liu, Li; Johnson, Hope L; Cousens, Simon; Perin, Jamie; Scott, Susana; Lawn, Joy E; Rudan, Igor; Campbell, Harry; Cibulskis, Richard; Li, Mengying; Mathers, Colin; Black, Robert E; Child Health Epidemiology Reference Group of WHO UNICEF (2012). "Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000". The Lancet. 379 (9832): 2151–61. doi:10.1016/S0140-6736(12)60560-1. PMID 22579125.
- ^ UNICEF, WHO, World Bank. UNICEF-WHO-World Bank Joint child malnutrition estimates. New York, Geneva & Washington DC, UNICEF, WHO & World Bank, 2012 (http://www.who.int/nutgrowthdb/estimates/en/index.html, accessed 27 March 2013)
- ^ IMPROVING CHILD NUTRITION > UNICEF. (April 2013). IMPROVING CHILD NUTRITION: The achievable imperative for global progress. http://www.unicef.org/publications/index_68661.html
- ^ a b Darnton-Hill, Ian, C. Nishida and W.P.T. James, ‘A life course approach to diet, nutrition and the prevention of chronic diseases’, Public Health Nutrition, vol. 7, no. 1A, 2004, pp. 101–121.
- ^ Finucane, Mariel M; Stevens, Gretchen A; Cowan, Melanie J; Danaei, Goodarz; Lin, John K; Paciorek, Christopher J; Singh, Gitanjali M; Gutierrez, Hialy R; Lu, Yuan; Bahalim, Adil N; Farzadfar, Farshad; Riley, Leanne M; Ezzati, Majid; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index) (2011). "National, regional, and global trends in body-mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants". The Lancet. 377 (9765): 557–67. doi:10.1016/S0140-6736(10)62037-5. PMID 21295846.
- ^ WHO. Global prevalence of vitamin A deficiency in populations at risk 1995–2005: WHO Global database of vitamin A deficiency. Geneva, WHO, 2009.
- ^ Sommer A, West KP Jr. Vitamin A deficiency: health, survival, and vision. New York, Oxford University Press, 1996[page needed]
- ^ Lozoff, Betsy; Jimenez, Elias; Wolf, Abraham W. (1991). "Long-Term Developmental Outcome of Infants with Iron Deficiency". New England Journal of Medicine. 325 (10): 687–94. doi:10.1056/NEJM199109053251004. PMID 1870641.
- ^ WHO. Iron deficiency anaemia: assessment, prevention, and control. A guide for programme managers. Geneva, WHO, 2001[page needed]
- ^ WHO, Centers for Disease Control. Worldwide prevalence of anaemia 1993–2005: WHO global database of anaemia. Geneva, WHO, 2008.[page needed]
- ^ W Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington DC, National Academy Press, 2001[page needed]
- ^ Algarín, Cecilia; Peirano, Patricio; Garrido, Marcelo; Pizarro, Felipe; Lozoff, Betsy (2003). "Iron Deficiency Anemia in Infancy: Long-Lasting Effects on Auditory and Visual System Functioning". Pediatric Research. 53 (2): 217–23. doi:10.1203/01.PDR.0000047657.23156.55. PMID 12538778.
- ^ WHO. Mortality and burden of disease attributable to selected major risks. Geneva, WHO, 2009 (http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_ report_full.pdf, accessed 17 May 2013).[dead link ][page needed]
- ^ http://www.mypyramid.gov/downloads/sample_menu.pdf
- ^ World Health Organization, European Health Report 2005: Public health action for healthier children and populations, WHO Regional Office for Europe, Copenhagen, 2005.
- ^ B. Polhamus et al., Pediatric Nutrition Surveillance 2003 Report, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, 2004, Table 18D, accessed at <http://www.cdc.gov/pednss/pednss_tables/pdf/ national_table18.pdf>..
- ^ Lassi, Zohra S; Haider, Batool A; Bhutta, Zulfiqar A (2010). Bhutta, Zulfiqar A (ed.). "Community-based intervention packages for reducing maternal and neonatal morbidity and mortality and improving neonatal outcomes". Cochrane Database of Systematic Reviews (11): CD007754. doi:10.1002/14651858.CD007754.pub2. PMID 21069697.
- ^ a b c d Nabarro, David (2013). "Global child and maternal nutrition—the SUN rises". The Lancet. 382 (9893): 666–7. doi:10.1016/S0140-6736(13)61086-7. PMID 23746773.
- ^ Commission on Life Sciences. (1985). Nutrition Education in US Medical Schools, p. 4. National Academies Press.
- ^ Adams KM, Lindell KC, Kohlmeier M, Zeisel SH (2006). "Status of nutrition education in medical schools,". Am. J. Clin. Nutr. 83 (4): 941S – 4S. PMC 2430660. PMID 16600952.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ WHO. Report of the expert consultation on the optimal duration of exclusive breastfeeding. Geneva, WHO, 2001.[page needed]
- ^ Villa, P.; Bouville, C.; Courtin, J.; Helmer, D.; Mahieu, E.; Shipman, P.; Belluomini, G.; Branca, M. (1986). "Cannibalism in the Neolithic". Science. 233 (4762): 431–7. doi:10.1126/science.233.4762.431. PMID 17794567.
- ^ a b History of the Study of Nutrition in Western Culture (Rai University lecture notes for General Nutrition course, 2004)
- ^ Daniel 1:5-16 (alternative translation)
- ^ Smith, R. (2004). "'Let food be thy medicine…'". BMJ. 328 (7433): 0–g. doi:10.1136/bmj.328.7433.0-g. PMC 318470.
- ^ Heinemann 2e Biology Activity Manual by Judith Brotherton and Kate Mundie[page needed]
- ^ Unraveling the Enigma of Vitamin D - a paper funded by the United States National Academy of Sciences[dead link ]
- ^ Whigham, Leah D.; Israel, Barbara A.; Atkinson, Richard L. (2006). "Adipogenic potential of multiple human adenoviruses in vivo and in vitro in animals". American Journal of Physiology. 290: R190–4. doi:10.1152/ajpregu.00479.2005. PMID 16166204.
{{cite journal}}
: Unknown parameter|laydate=
ignored (help); Unknown parameter|laysource=
ignored (help); Unknown parameter|laysummary=
ignored (help)
External links
- Diet, Nutrition and the prevention of chronic diseases by a Joint WHO/FAO Expert consultation (2003)
- United States Department of Agriculture (USDA) Frequently asked questions
- [1] Understanding the choices - Health Journey
- UN Standing Committee on Nutrition – In English, French and Portuguese
- Health-EU Portal Nutrition
Databases and search engines
- Nutrition Data
- Recipe Nutrition – extends USDA database with friendly names for common ingredients, recipe nutrition calculator and additional specialized ingredients