Slater–Condon rules
Within computational chemistry, the Slater–Condon rules express integrals of one- and two-body operators over wavefunctions constructed as Slater determinants of orthonormal orbitals in terms of the individual orbitals. In doing so, the original integrals involving N-electron wavefunctions are reduced to sums over integrals involving at most two molecular orbitals, or in other words, the original 3N dimensional integral is expressed in terms of many three- and six-dimensional integrals.
The rules are used in deriving the working equations for all methods of approximately solving the Schrödinger equation that employ wavefunctions constructed from Slater determinants. These include Hartree-Fock theory, where the wavefunction is a single determinant, and all those methods which use Hartree-Fock theory as a reference such as Møller-Plesset perturbation theory, and Coupled cluster and Configuration interaction theories.
In 1929 John C. Slater derived expressions for diagonal matrix elements of an approximate Hamiltonian while investigating atomic spectra within a perturbative approach.[1] The following year Edward Condon extended the rules to non-diagonal matrix elements.[2] In 1955 Per-Olov Löwdin further generalized these results for wavefunctions constructed from non-orthonormal orbitals, leading to what are known as the Löwdin rules.[3]
Mathematical background
In terms of an antisymmetrization operator () acting upon a product of N orthonormal spin-orbitals (with r and σ denoting spatial and spin variables), a determinantal wavefunction is denoted as
A wavefunction differing from this by only a single orbital (the m'th orbital) will be denoted as
and a wavefunction differing by two orbitals will be denoted as
For any particular one- or two-body operator, Ô, the Slater–Condon rules show how to simplify the following types of integrals:[4]
Matrix elements for two wavefunctions differing by more than two orbitals vanish unless higher order interactions are introduced.
Integrals of one-body operators
One body operators depend only upon the position or momentum of a single electron at any given instant. Examples are the kinetic energy, dipole moment, and total angular momentum operators.
A one-body operator in an N-particle system is decomposed as
The Slater–Condon rules for such an operator are:[4][5]
Integrals of two-body operators
Two-body operators couple two particles at any given instant. Examples being the electron-electron repulsion, magnetic dipolar coupling, and total angular momentum-squared operators.
A two-body operator in an N-particle system is decomposed as
The Slater–Condon rules for such an operator are:[4][5]
where
Any matrix elements of a two-body operator with wavefunctions that differ in three or more spin orbitals will vanish.
References
- ^ Slater, J. C. (1929). "The Theory of Complex Spectra". Phys. Rev. 34 (10): 1293–1322. Bibcode:1929PhRv...34.1293S. doi:10.1103/PhysRev.34.1293. PMID 9939750.
- ^ Condon, E. U. (1930). "The Theory of Complex Spectra". Phys. Rev. 36 (7): 1121–1133. Bibcode:1930PhRv...36.1121C. doi:10.1103/PhysRev.36.1121.
- ^ Löwdin, Per-Olov (1955). "Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction". Phys. Rev. 97 (6): 1474–1489. Bibcode:1955PhRv...97.1474L. doi:10.1103/PhysRev.97.1474.
- ^ a b c Piela, Lucjan (2006). "Appendix M". Ideas of Quantum Chemistry. Amsterdam: Elsevier Science. ISBN 0-444-52227-1.
- ^ a b Szabo, Attila (1996). "Ch. 2.3.3". Modern Quantum Chemistry : Introduction to Advanced Electronic Structure Theory. Mineola, New York: Dover Publications. ISBN 0-486-69186-1.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)