Jump to content

Post-translational modification

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Naikymen (talk | contribs) at 23:14, 21 March 2014. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Posttranslational modification (PTM) is a step in protein biosynthesis. Proteins are created by ribosomes translating mRNA into polypeptide chains. These polypeptide chains undergo PTM (such as folding, cutting and other processes) before becoming the mature protein product.

Posttranslational modification of insulin. At the top, the ribosome translates a mRNA sequence into a protein, insulin, and passes the protein through the endoplasmic reticulum, where it is cut, folded and held in shape by disulfide (-S-S-) bonds. Then the protein passes through the golgi apparatus, where it is packaged into a vesicle. In the vesicle, more parts are cut off, and it turns into mature insulin.

A protein (also called a polypeptide) is a chain of amino acids. During protein synthesis, 20 different amino acids can be incorporated to become a protein. After translation, the posttranslational modification of amino acids extends the range of functions of the protein by attaching it to other biochemical functional groups (such as acetate, phosphate, various lipids and carbohydrates), changing the chemical nature of an amino acid (e.g. citrullination), or making structural changes (e.g. formation of disulfide bridges).

Also, enzymes may remove amino acids from the amino end of the protein, or cut the peptide chain in the middle. For instance, the peptide hormone insulin is cut twice after disulfide bonds are formed, and a propeptide is removed from the middle of the chain; the resulting protein consists of two polypeptide chains connected by disulfide bonds. Also, most nascent polypeptides start with the amino acid methionine because the "start" codon on mRNA also codes for this amino acid. This amino acid is usually taken off during post-translational modification.

Other modifications, like phosphorylation, are part of common mechanisms for controlling the behavior of a protein, for instance activating or inactivating an enzyme.

Post-translational modification of proteins can be detected by a variety of techniques, including mass spectrometry, Eastern blotting, and Western blotting.

PTMs involving addition of functional groups

The genetic code diagram[1] showing the amino acid residues as target of modification.

PTMs involving addition by an enzyme in vivo

PTMs involving addition of hydrophobic groups for membrane localization

PTMs involving addition of cofactors for enhanced enzymatic activity

PTMs involving unique modifications of translation factors

PTMs involving addition of smaller chemical groups

PTMs involving non-enzymatic additions in vivo

  • glycation, the addition of a sugar molecule to a protein without the controlling action of an enzyme.

PTMs involving non-enzymatic additions in vitro

PTMs involving addition of other proteins or peptides

PTMs involving changing the chemical nature of amino acids

PTMs involving structural changes

Post-translational modification statistics

Recently, statistics of each post-translational modification experimentally and putatively detected have been compiled using proteome-wide information from the Swiss-Prot database.[13] These statistics can be found at http://selene.princeton.edu/PTMCuration/.

Case examples

See also

References

  1. ^ Gramatikoff K. in Abgent Catalog (2004-5) p.263
  2. ^ Whiteheart SW, Shenbagamurthi P, Chen L; et al. (1989). "Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha". J. Biol. Chem. 264 (24): 14334–41. PMID 2569467. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  3. ^ Polevoda B, Sherman F (2003). "N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins". J Mol Biol. 325 (4): 595–622. doi:10.1016/S0022-2836(02)01269-X. PMID 12507466.
  4. ^ Yang XJ, Seto E (2008). "Lysine acetylation: codified crosstalk with other posttranslational modifications". Mol Cell. 31 (4): 449–61. doi:10.1016/j.molcel.2008.07.002. PMC 2551738. PMID 18722172.
  5. ^ Bártová E, Krejcí J, Harnicarová A, Galiová G, Kozubek S (2008). "Histone modifications and nuclear architecture: a review". J Histochem Cytochem. 56 (8): 711–21. doi:10.1369/jhc.2008.951251. PMC 2443610. PMID 18474937.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Glozak MA, Sengupta N, Zhang X, Seto E (2005). "Acetylation and deacetylation of non-histone proteins". Gene. 363: 15–23. doi:10.1016/j.gene.2005.09.010. PMID 16289629.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Eddé B, Rossier J, Le Caer JP, Desbruyères E, Gros F, Denoulet P (1990). "Posttranslational glutamylation of alpha-tubulin". Science. 247 (4938): 83–5. Bibcode:1990Sci...247...83E. doi:10.1126/science.1967194. PMID 1967194.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Walker CS, Shetty RP, Clark K; et al. (2001). "On a potential global role for vitamin K-dependent gamma-carboxylation in animal systems. Animals can experience subvaginalhemototitis as a result of this linkage. Evidence for a gamma-glutamyl carboxylase in Drosophila". J. Biol. Chem. 276 (11): 7769–74. doi:10.1074/jbc.M009576200. PMID 11110799. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  9. ^ Malakhova, Oxana A.; Yan, Ming; Malakhov, Michael P.; Yuan, Youzhong; Ritchie, Kenneth J.; Kim, Keun Il; Peterson, Luke F.; Shuai, Ke; and Dong-Er Zhang (2003). "Protein ISGylation modulates the JAK-STAT signaling pathway". Genes & Development. 17 (4): 455–60. doi:10.1101/gad.1056303. PMC 195994. PMID 12600939.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Van G. Wilson (Ed.) (2004). Sumoylation: Molecular Biology and Biochemistry. Horizon Bioscience. ISBN 0-9545232-8-8.
  11. ^ Brennan DF, Barford D (2009). "Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases". Trends in Biochemical Sciences. 34 (3): 108–114. doi:10.1016/j.tibs.2008.11.005. PMID 19233656.
  12. ^ Mydel P; et al. (2010). "Carbamylation-dependent activation of T cells: a novel mechanism in the pathogenesis of autoimmune arthritis". Journal of Immunology. 184 (12): 6882–6890. doi:10.4049/jimmunol.1000075. PMC 2925534. PMID 20488785. {{cite journal}}: |first2= missing |last2= (help); |first3= missing |last3= (help); |first4= missing |last4= (help); |first5= missing |last5= (help); |first6= missing |last6= (help); |first7= missing |last7= (help); Explicit use of et al. in: |author= (help)
  13. ^ Khoury, George A.; Baliban, Richard C.; and Christodoulos A. Floudas (2011). "Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database". Scientific Reports. 1 (90). Bibcode:2011NatSR...1E..90K. doi:10.1038/srep00090.{{cite journal}}: CS1 maint: multiple names: authors list (link)