Jump to content

Atmospheric icing

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by BG19bot (talk | contribs) at 06:33, 18 June 2014 (WP:CHECKWIKI error fix for #61. Punctuation goes before References. Do general fixes if a problem exists. - using AWB (10242)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The effect of atmospheric icing on a tree.

Atmospheric icing occurs when water droplets in the atmosphere freeze on objects they contact. This can be extremely dangerous to aircraft, as the built-up ice changes the aerodynamics of the flight surfaces, which can increase the risk of a subsequent stalling of the airfoil. For this reason, ice protection systems are often considered critical components of flight, and aircraft are often deiced prior to take-off in icy environments.

Not all water freezes at 0 °C or 32 °F. Liquid water below this temperature is called supercooled, and such supercooled droplets cause the icing problems on aircraft. Below −20 °C (−4 °F), icing is rare because clouds at these temperatures usually consist of ice particles rather than supercooled water droplets. Below −48 °C (−54.4 °F), supercooled water cannot exist, therefore icing is impossible.[1]

Icing also occurs on towers, wind turbines, boats, oil rigs, trees and other objects exposed to low temperatures and water droplets.

Aircraft incidents

A number of aircraft crashes have been caused by ice. In other incidents icing was a contributory factor.

References

  1. ^ Moore, Emily; Valeria Molinero (24 November 2011). "structural transformation in supercooled water controls the crystallization rate of ice". Nature. 479: 506–508. arXiv:1107.1622. Bibcode:2011Natur.479..506M. doi:10.1038/nature10586. Retrieved 24 November 2011.

See also

Template:Multicol

Template:Multicol-break

Template:Multicol-end

References

  • FAA (U.S.) Advisory Circular 20-113: Pilot Precautions and Procedures to be taken in Preventing Aircraft Reciprocating Engine Induction System and Fuel System Icing Problems
  • FAA (U.S.) Advisory Circular 20-117: Hazards Following Ground Deicing and Ground Operations in Conditions Conducive to Aircraft Icing
  • FAA (U.S.) Advisory Circular 20-147: Turbojet, Turboprop, and Turbofan Engine Induction System Icing and Ice Ingestion
  • Wind Energy in Cold Climates: Icing on wind turbines