Other Möbius inversion formulas are obtained when different locally finite partially ordered sets replace the classic case of the natural numbers ordered by divisibility; for an account of those, see incidence algebra.
where μ is the Möbius function and the sums extend over all positive divisorsd of n. In effect, the original f(n) can be determined given g(n) by using the inversion formula. The two sequences are said to be Möbius transforms of each other.
The formula is also correct if f and g are functions from the positive integers into some abelian group (viewed as a -module).
The theorem follows because is (commutative and) associative, and , where is the identity function for the Dirichlet convolution, taking values for all . Thus .
Series relations
Let
so that
is its transform. The transforms are related by means of series: the Lambert series
Both of these lists of functions extend infinitely in both directions. The Möbius inversion formula enables these lists to be traversed backwards.
As an example the sequence starting in is:
The generated sequences can perhaps be more easily understood by considering the corresponding Dirichlet series: each repeated application of the transform corresponds to multiplication by the Riemann zeta function.
A related inversion formula more useful in combinatorics is as follows: suppose F(x) and G(x) are complex-valued functions defined on the interval [1,∞) such that
then
Here the sums extend over all positive integers n which are less than or equal to x.
The previous formula arises in the special case of the constant function , whose Dirichlet inverse is .
A particular application of the first of these extensions arises if we have (complex-valued) functions f(n) and g(n) defined on the positive integers, with
By defining and , we deduce that
A simple example of the use of this formula is counting the number of reduced fractions 0 < a/b < 1, where a and b are coprime and b≤n. If we let f(n) be this number, then g(n) is the total number of fractions 0 < a/b < 1 with b≤n, where a and b are not necessarily coprime. (This is because every fraction a/b with gcd(a,b) = d and b≤n can be reduced to the fraction (a/d)/(b/d) with b/d ≤ n/d, and vice versa.) Here it is straightforward to determine g(n) = n(n-1)/2, but f(n) is harder to compute.
Another inversion formula is (where we assume that the series involved are absolutely convergent):
As above, this generalises to the case where is an arithmetic function possessing a Dirichlet inverse :
Multiplicative notation
As Möbius inversion applies to any abelian group, it makes no difference whether the group operation is written as addition or as multiplication. This gives rise to the following notational variant of the inversion formula:
Proofs of generalizations
The first generalization can be proved as follows. We use Iverson's convention that [condition] is the indicator function of the condition, being 1 if the condition is true and 0 if false. We use the result that , that is, 1*μ=i.
We have the following:
The proof in the more general case where α(n) replaces 1 is essentially identical, as is the second generalisation.