Voyager 1
Mission type | Outer planetary, heliosphere, and interstellar medium exploration |
---|---|
Operator | NASA / JPL |
COSPAR ID | 1977-084A[1] |
SATCAT no. | 10321[2] |
Website | voyager |
Mission duration | 47 years, 4 months and 2 days elapsed Planetary mission: 3 years, 3 months, 9 days Interstellar mission: 44 years and 24 days elapsed (continuing) |
Spacecraft properties | |
Manufacturer | Jet Propulsion Laboratory |
Launch mass | 721.9 kilograms (1,592 lb) |
Power | 420 watts |
Start of mission | |
Launch date | September 5, 1977, 12:56:00 | UTC
Rocket | Titan IIIE |
Launch site | Cape Canaveral LC-41 |
Flyby of Jupiter | |
Closest approach | March 5, 1979 |
Distance | 349,000 kilometers (217,000 mi) |
Flyby of Saturn | |
Closest approach | November 12, 1980 |
Distance | 124,000 kilometers (77,000 mi) |
Voyager 1 is a 722-kilogram (1,592 lb) space probe launched by NASA on September 5, 1977 to study the outer Solar System. Operating for 47 years, 4 months and 2 days as of 7 January 2025, the spacecraft communicates with the Deep Space Network to receive routine commands and return data. At a distance of about 127.63 AU (1.909×1010 km) from the Earth as of June 27, 2014,[3][4] it is the farthest spacecraft from Earth.[5][6]
The primary mission ended on November 20, 1980, after encounters with the Jovian system in 1979 and the Saturnian system in 1980. It was the first probe to provide detailed images of the two planets and their moons. As part of the Voyager program, like its sister craft Voyager 2, the spacecraft is in an extended mission to locate and study the regions and boundaries of the outer heliosphere, and finally to begin exploring the interstellar medium.
On September 12, 2013, NASA announced that Voyager 1 had crossed the heliopause and entered interstellar space on August 25, 2012, making it the first spacecraft to do so.[7][8][9][10][11] As of 2013[update], the probe was moving with a relative velocity to the Sun of about 17 km/s.[12] With the velocity the probe is currently maintaining, Voyager 1 is traveling at about 325 million miles per year (520 million kilometers).[13] On July 7, 2014, NASA reported Voyager 1 experienced a new third "tsunami wave", generated from activity (coronal mass ejections) on the sun, further confirming that the probe is in interstellar space.[14] Voyager 1 is expected to continue its mission until 2025, when its generators will no longer supply enough power to operate any of its instruments.
On December 4, 2013, NASA presented the Voyager Project Scientist Ed Stone with a NASA Distinguished Public Service Medal [15] and 2014 Howard Hughes Memorial Award by Aero Club of Southern California.[16]
Mission background
History
In the 1960s, a Grand Tour to study the outer planets was proposed. This prompted NASA to begin work on a mission in the early 1970s.[17]
Information gathered by the Pioneer 10 spacecraft helped Voyager's engineers design Voyager to cope more effectively with the intense radiation environment around Jupiter.[18]
Originally, Voyager 1 was planned as "Mariner 11" of the Mariner program. Due to budget cuts, the mission was scaled back to be a flyby of Jupiter and Saturn and renamed the Mariner Jupiter-Saturn probes. As the program progressed, the name was later changed to Voyager, since the probe designs began to differ greatly from previous Mariner missions.[19]
Golden record
The Voyager space probe carries a gold-plated audio-visual disc in the event that the spacecraft is ever found by intelligent life forms from other planetary systems.[20] The disc carries photos of the Earth and its lifeforms, a range of scientific information, spoken greetings from people such as the Secretary-General of the United Nations and the President of the United States and a medley, "Sounds of Earth," that includes the sounds of whales, a baby crying, waves breaking on a shore, and a collection of music, including works by Mozart, Blind Willie Johnson, Chuck Berry's "Johnny B. Goode", and Valya Balkanska. Other Eastern and Western classics are included, as well as various performances of indigenous music from around the world. The record also contains greetings in 55 different languages.[21]
Spacecraft design
Voyager 1 was constructed by the Jet Propulsion Laboratory.[7][22][23] It has 16 hydrazine thrusters, three-axis stabilization gyroscopes, and referencing instruments to keep the probe's radio antenna pointed toward Earth. Collectively, these instruments are part of the Attitude and Articulation Control Subsystem (AACS), along with redundant units of most instruments and 8 backup thrusters. The spacecraft also included 11 scientific instruments to study celestial objects such as planets as it travels through space.[24]
Communication system
The radio communication system of Voyager 1 was designed to be used up to and beyond the limits of the Solar System. The communication system includes a 3.7 meters (12 ft) diameter parabolic dish high-gain antenna to send and receive radio waves via the three Deep Space Network stations on the Earth.[25] Voyager 1 normally transmits data to Earth over Deep Space Network Channel 18, using a frequency of either 2296.481481 MHz or 8420.432097 MHz, while signals from Earth to Voyager are broadcast at 2114.676697 MHz.[26]
When Voyager 1 is unable to communicate directly with the Earth, its digital tape recorder (DTR) can record up to 69.63 kilobytes of data for transmission at another time.[27] As of 2013[update], signals from Voyager 1 take over 17 hours to reach Earth.[9]
Power
Voyager 1 has three radioisotope thermoelectric generators (RTGs) mounted on a boom. Each MHW-RTG contains 24 pressed plutonium-238 oxide spheres. The RTGs generated about 470 watts of electric power at the time of launch, with the remainder being dissipated as waste heat.[28] The power output of the RTGs does decline over time (due to the short 87.7 yr half-life of the fuel and degradation of the thermocouples), but the RTGs of Voyager 1 will continue to support some of its operations until 2025.[24][29]
-
Diagram of RTG fuel container, showing the plutonium-238 oxide spheres
-
Model of an RTG unit
Computers
Unlike the other onboard instruments, the operation of the cameras for visible light is not autonomous, but rather it is controlled by an imaging parameter table contained in one of the on-board digital computers, the Flight Data Subsystem (FDS). More recent space probes, since about 1990, usually have completely autonomous cameras.
The computer command subsystem (CCS) controls the cameras. The CCS contains fixed computer programs such as command decoding, fault detection, and correction routines, antenna pointing routines, and spacecraft sequencing routines. This computer is an improved version of the one that was used in the Viking orbiter.[30] The hardware in both custom-built CCS subsystems in the Voyagers is identical. There is only a minor software modification for one of them that has a scientific subsystem that the other lacks.
The Attitude and Articulation Control Subsystem (AACS) controls the spacecraft orientation (its attitude). It keeps the high-gain antenna pointing towards the Earth, controls attitude changes, and points the scan platform. The custom-built AACS systems on both Voyagers are the same.
Scientific instruments
Instrument Name | Abr. | Description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Imaging Science System (disabled) |
(ISS) | Utilized a two-camera system (narrow-angle/wide-angle) to provide imagery of Jupiter, Saturn and other objects along the trajectory. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Radio Science System (disabled) |
(RSS) | Utilized the telecommunications system of the Voyager spacecraft to determine the physical properties of planets and satellites (ionospheres, atmospheres, masses, gravity fields, densities) and the amount and size distribution of material in Saturn's rings and the ring dimensions. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Infrared Interferometer Spectrometer (disabled) |
(IRIS) | Investigates both global and local energy balance and atmospheric composition. Vertical temperature profiles are also obtained from the planets and satellites as well as the composition, thermal properties, and size of particles in Saturn's rings. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ultraviolet Spectrometer (active) |
(UVS) | Designed to measure atmospheric properties, and to measure radiation. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triaxial Fluxgate Magnetometer (active) |
(MAG) | Designed to investigate the magnetic fields of Jupiter and Saturn, the interaction of the solar wind with the magnetospheres of these planets, and the magnetic field of interplanetary space out to the boundary between the solar wind and the magnetic field of interstellar space, if crossed. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Plasma Spectrometer (defective) |
(PLS) | Investigates the macroscopic properties of the plasma ions and measures electrons in the energy range from 5 eV to 1 keV. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Low Energy Charged Particle Instrument (active) |
(LECP) | Measures the differential in energy fluxes and angular distributions of ions, electrons and the differential in energy ion composition. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cosmic Ray System (active) |
(CRS) | Determines the origin and acceleration process, life history, and dynamic contribution of interstellar cosmic rays, the nucleosynthesis of elements in cosmic-ray sources, the behavior of cosmic rays in the interplanetary medium, and the trapped planetary energetic-particle environment. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Planetary Radio Astronomy Investigation (disabled) |
(PRA) | Utilizes a sweep-frequency radio receiver to study the radio-emission signals from Jupiter and Saturn. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Photopolarimeter System (defective) |
(PPS) | Utilized a telescope with a polarizer to gather information on surface texture and composition of Jupiter and Saturn and information on atmospheric scattering properties and density for both planets. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Plasma Wave System (active) |
(PWS) | Provides continuous, sheath-independent measurements of the electron-density profiles at Jupiter and Saturn as well as basic information on local wave-particle interaction, useful in studying the magnetospheres. More
|
For more details on the Voyager space probes' identical instrument packages, see the separate article on the overall Voyager Program.
-
Voyager 1 in a space simulator chamber.
-
Gold-Plated Record is attached to Voyager 1.
Mission profile
Timeline of travel | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Launch and trajectoryThe Voyager 1 probe was launched on September 5, 1977, from Launch Complex 41 at the Cape Canaveral Air Force Station, aboard a Titan IIIE launch vehicle. The Voyager 2 probe had been launched two weeks earlier, on August 20, 1977. Despite being launched later, Voyager 1 reached both Jupiter[33] and Saturn sooner, following a shorter trajectory.[34] Encounter with JupiterVoyager 1 began photographing Jupiter in January 1979. Its closest approach to Jupiter was on March 5, 1979, at a distance of about 349,000 kilometers (217,000 miles) from the planet's center.[33] Because of the greater photographic resolution allowed by a closer approach, most observations of the moons, rings, magnetic fields, and the radiation belt environment of the Jovian system were made during the 48-hour period that bracketed the closest approach. Voyager 1 finished photographing the Jovian system in April 1979. Discovery of active volcanic activity on the satellite Io was probably the greatest surprise. It was the first time active volcanoes had been seen on another body in the Solar System. It appears that activity on Io affects the entire Jovian system. Io appears to be the primary source of matter that pervades the Jovian magnetosphere - the region of space that surrounds the planet influenced by the planet's strong magnetic field. Sulfur, oxygen, and sodium, apparently erupted by Io's volcanoes and sputtered off the surface by impact of high-energy particles, were detected at the outer edge of the magnetosphere of Jupiter.[33] The two Voyager space probes made a number of important discoveries about Jupiter, its satellites, its radiation belts, and its never-before-seen planetary rings.
Media related to the Voyager 1 Jupiter encounter at Wikimedia Commons
Encounter with SaturnThe gravitational assist trajectories at Jupiter were successfully carried out by both Voyagers, and the two spacecraft went on to visit Saturn and its system of moons and rings. Voyager 1's Saturnian flyby occurred in November 1980, with the closest approach on November 12, 1980, when the space probe came within 124,000 kilometers (77,000 mi) of Saturn's cloud-tops. The space probe's cameras detected complex structures in the rings of Saturn, and its remote sensing instruments studied the atmospheres of Saturn and its giant moon Titan.[35] Voyager 1 found that about 7 percent of the volume of Saturn's upper atmosphere is helium (compared with 11 percent of Jupiter's atmosphere), while almost all the rest is hydrogen. Since Saturn's internal helium abundance was expected to be the same as Jupiter's and the Sun's, the lower abundance of helium in the upper atmosphere may imply that the heavier helium may be slowly sinking through Saturn's hydrogen; that might explain the excess heat that Saturn radiates over energy it receives from the Sun. Winds blow at high speeds in Saturn. Near the equator, the Voyagers measured winds about 500 m/s (1,100 mi/hr). The wind blows mostly in an easterly direction. The Voyagers found aurora-like ultraviolet emissions of hydrogen at mid-latitudes in the atmosphere, and auroras at polar latitudes (above 65 degrees). The high-level auroral activity may lead to formation of complex hydrocarbon molecules that are carried toward the equator. The mid-latitude auroras, which occur only in sunlit regions, remain a puzzle, since bombardment by electrons and ions, known to cause auroras on Earth, occurs primarily at high latitudes. Both Voyagers measured the rotation of Saturn (the length of a day) at 10 hours, 39 minutes, 24 seconds.[35] Because Pioneer 11 had one year earlier detected a thick, gaseous atmosphere over Titan, the Voyager space probes' controllers at the Jet Propulsion Laboratory elected for Voyager 1 to make a close approach of Titan. Its trajectory with a close fly-by of Titan caused a gravitational deflection that sent Voyager 1 out of the plane of the ecliptic, thus ending its planetary science mission. Voyager 1 could have been directed to visit Uranus and Neptune (later accomplished by Voyager 2). Also, Voyager 1 could have been commanded onto a different trajectory, whereby the gravitational slingshot effect of Saturn's mass would have steered and boosted it out to a fly-by of Pluto. However, this Plutonian option was not exercised, because the close fly-by of Titan was determined to have more scientific value and less risk.[36]
Media related to the Voyager 1 Saturn encounter at Wikimedia Commons
Exit from the heliosphereVoyager 1, on February 14, 1990, took the first ever "family portrait" of the Solar System as seen from outside,[37] which includes the image of planet Earth known as "Pale Blue Dot". Soon afterwards its cameras were deactivated to conserve power and computer resources for other equipment. Camera software have been removed from the spacecraft, so it now would be complex to get them working again (also Earth-side software and computers for reading the images are no longer available).[36] On February 17, 1998, Voyager 1 reached a distance of 69 AU from the Sun and overtook Pioneer 10 as the most distant spacecraft from Earth.[38] Travelling at about 17 kilometers per second (11 mi/s)[39] it has the fastest heliocentric recession speed of any spacecraft.[40] As Voyager 1 headed for interstellar space, its instruments continued to study the Solar System. Jet Propulsion Laboratory scientists used the plasma wave experiments aboard Voyager 1 and 2 to look for the heliopause, the boundary at which the solar wind transitions into the interstellar medium.[41] Termination shockScientists at the Johns Hopkins University Applied Physics Laboratory believed that Voyager 1 had entered the termination shock in February 2003.[42] This marks the point where the solar wind slows down to subsonic speeds. Some other scientists expressed doubt, discussed in the journal Nature of November 6, 2003.[43] The issue would not be resolved until other data became available, since Voyager 1's solar-wind detector ceased functioning in 1990. This failure meant that termination shock detection would have to be inferred from the data from the other instruments on board.[44][45][46] In May 2005, a NASA press release said that the consensus was that Voyager 1 was then in the heliosheath.[47] In a scientific session at the American Geophysical Union meeting in New Orleans on the morning of May 25, 2005, Dr. Ed Stone presented evidence that Voyager 1 crossed the termination shock in late 2004.[48] This event is believed to have occurred on December 15, 2004 at a distance of 94 AU from the Sun.[48][49] HeliosheathOn March 31, 2006, amateur radio operators from AMSAT in Germany tracked and received radio waves from Voyager 1 using the 20-meter (66 ft) dish at Bochum with a long integration technique. Retrieved data was checked and verified against data from the Deep Space Network station at Madrid, Spain.[50] This is believed to be the first such amateur tracking of Voyager 1.[50] It was confirmed on December 13, 2010 that Voyager 1 had passed the reach of the radial outward flow of the solar wind, as measured by the Low Energy Charged Particle device. It is suspected that solar wind at this distance turns sideways because of interstellar wind pushing against the heliosphere. Since June 2010, detection of solar wind had been consistently at zero, providing conclusive evidence of the event.[51][52][53] On this date, the spacecraft was approximately 17.3 billion kilometers (116 AU or 10.8 billion miles) from the Sun.[54] Voyager 1 was commanded to change its orientation to measure the sideways motion of the solar wind at that location in space on March 2011. A test roll done in February had confirmed the spacecraft's ability to maneuver and reorient itself. The course of the spacecraft was not changed. It rotated 70 degrees counterclockwise with respect to Earth to detect the solar wind. This was the first time the spacecraft had done any major maneuvering since the family portrait photograph of the planets was taken in 1990. After the first roll the spacecraft had no problem in reorienting itself with Alpha Centauri, Voyager 1's guide star, and it resumed sending transmissions back to Earth. Voyager 1 was expected to enter interstellar space "at any time". Voyager 2 was still detecting outward flow of solar wind at that point but it was estimated that in the following months or years it would experience the same conditions as Voyager 1.[55][56] The spacecraft was reported at 12.44° declination and 17.163 hours right ascension, and at an ecliptic latitude of 34.9° (the ecliptic latitude changes very slowly), placing it in the constellation Ophiuchus as observed from the Earth on May 21, 2011.[36] On December 1, 2011, it was announced that Voyager 1 had detected the first Lyman-alpha radiation originating from the Milky Way galaxy. Lyman-alpha radiation had previously been detected from other galaxies, but because of interference from the Sun, the radiation from the Milky Way was not detectable.[57] NASA announced on December 5, 2011 that Voyager 1 had entered a new region referred to as a "cosmic purgatory". Within this stagnation region, charged particles streaming from the Sun slow and turn inward, and the Solar System's magnetic field is doubled in strength as interstellar space appears to be applying pressure. Energetic particles originating in the Solar System decline by nearly half, while the detection of high-energy electrons from outside increases 100-fold. The inner edge of the stagnation region is located approximately 113 astronomical units from the Sun.[58][59] HeliopauseNASA announced in June 2012 that the probe was detecting changes in the environment that were suspected to correlate with arrival at the heliopause.[60] Voyager 1 had reported a marked increase in its detection of charged particles from interstellar space, which are normally deflected by the solar winds within the heliosphere from the Sun. The craft thus began to enter the interstellar medium at the edge of the Solar System.[61] Voyager 1 became the first spacecraft to cross the heliopause in August 2012, then at a distance of 121 AU from the Sun, although this was not confirmed for another year.[8][62][63][64][65] As of September 2012, sunlight took 16.89 hours to get to Voyager 1 which was at a distance of 121 AU. The apparent magnitude of the Sun from the spacecraft was −16.3.[3] Voyager 1 was traveling at 17,043 m/s (38,120 mph) relative to the Sun (about 3.595 AU per year). It would need about 17,565 years at this speed to travel a complete light year.[3] To compare, Proxima Centauri, the closest star to the Sun, is about 4.2 light-years (or 2.65×105 AU) distant. Were the spacecraft traveling in the direction of that star, 73,775 years would pass before reaching it. (Voyager 1 is heading in the direction of the constellation Ophiuchus.[3]) In late 2012, researchers reported that particle data from the spacecraft suggested that the probe had passed through the heliopause. Measurements from the spacecraft revealed a steady rise since May in collisions with high energy particles (above 70 MeV), which are believed to be cosmic rays emanating from supernova explosions far beyond the Solar System, with a sharp increase in these collisions in late August. At the same time, in late August, there was a dramatic drop in collisions with low-energy particles, which are thought to originate from the Sun.[66] Ed Roelof, space scientist at Johns Hopkins University and principal investigator for the Low-Energy Charged Particle instrument on the spacecraft declared that "Most scientists involved with Voyager 1 would agree that [these two criteria] have been sufficiently satisfied."[66] However, the last criterion for officially declaring that Voyager 1 had crossed the boundary, the expected change in magnetic field direction (from that of the Sun to that of the interstellar field beyond), had not been observed (the field had changed direction by only 2 degrees[62]), which suggested to some that the nature of the edge of the heliosphere had been misjudged. On December 3, 2012, Voyager project scientist Ed Stone of the California Institute of Technology said, "Voyager has discovered a new region of the heliosphere that we had not realized was there. We're still inside, apparently. But the magnetic field now is connected to the outside. So it's like a highway letting particles in and out."[67] The magnetic field in this region was 10 times more intense than Voyager 1 encountered before the termination shock. It was expected to be the last barrier before the spacecraft exited the Solar System completely and entered interstellar space.[68][69][70] In March 2013, it was announced that Voyager 1 might have become the first spacecraft to enter interstellar space, having detected a marked change in the plasma environment on August 25, 2012. However, until September 12, 2013, it was still an open question as to whether the new region was interstellar space or an unknown region of the Solar System. At that time, the former alternative was officially confirmed.[11][71][72] Voyager 1 reached a distance of 125 AU from the Sun on August 2, 2013.[73] Interstellar mediumOn September 12, 2013, NASA officially confirmed that Voyager 1 had reached the interstellar medium in August 2012 as previously observed, with a generally accepted date of August 25, 2012, the date durable changes in the density of energetic particles were first detected.[8][62][63][64][65] By this point most space scientists had abandoned the belief that a change in magnetic field direction must accompany crossing of the heliopause;[64] a new model of the heliopause predicted that no such change would be found.[74] A key finding that persuaded many scientists that the heliopause had been crossed was an indirect measurement of an 80-fold increase in electron density, based on the frequency of plasma oscillations observed beginning on April 9, 2013,[64] triggered by a solar outburst that had occurred in March 2012[8] (Electron density is expected to be two orders of magnitude higher outside the heliopause than within.[63]) Weaker sets of oscillations measured in October and November 2012[10][71] provided additional data. An indirect measurement was required because Voyager 1's plasma spectrometer had stopped working in 1980.[65] In September 2013, NASA released audio renditions of these plasma waves. The recordings represent the first sounds to be captured in interstellar space.[75][76] While Voyager 1 is commonly spoken of as having left the Solar System simultaneously with having left the heliosphere, the two are not the same. The Solar System is usually defined as the vastly larger region of space populated by bodies that orbit the Sun. The craft is presently less than one seventh the distance to the aphelion of Sedna, and it has not yet entered the Oort cloud, the source region of long-period comets, regarded by astronomers as the outermost zone of the Solar System.[62][71][72] Future of the probeVoyager 1 will reach the Oort cloud in about 300 years[77][78] and take about 30,000 years to pass through it.[62][71][72] Though it is not heading towards any particular star, in about 40,000 years, it will pass within 1.6 light years of the star Gliese 445, which is at present in the constellation Camelopardalis.[79] That star is generally moving towards the Solar System at about 119 km/s (430,000 km/h; 270,000 mph).[79] The Voyagers are destined—perhaps eternally—to wander the Milky Way.[80] Provided Voyager 1 does not collide with anything and is not retrieved, the New Horizons space probe will never pass it, despite being launched from Earth at a faster speed than either Voyager spacecraft. New Horizons is traveling at about 15 km/s, 2 km/s slower than Voyager 1, and is still slowing down. When New Horizons reaches the same distance from the Sun as Voyager 1 is now, its speed will be about 13 km/s (8 mi/s).[81]
See also
References
External linksWikimedia Commons has media related to Voyager 1.
|