Jump to content

Standard temperature and pressure

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Tbone31001 (talk | contribs) at 03:40, 3 January 2015. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Definitions

Past use

In the last five to six decades,[when?] professionals and scientists using the metric system of units defined the standard reference conditions of temperature and pressure for expressing gas volumes as being 15 °C (288.15 K; 59.00 °F) and 101.325 kPa (1.00 atm; 760 Torr). During those same years, the most commonly used standard reference conditions for people using the imperial or U.S. customary systems was 60 °F (15.56 °C; 288.71 K) and 14.696 psi (1 atm) because it was almost universally used by the oil and gas industries worldwide. The above definitions are no longer the most commonly used in either system of units.

Current use

Many different definitions of standard reference conditions are currently being used by organizations all over the world. The table below lists a few of them, but there are more. Some of these organizations used other standards in the past. For example, IUPAC has, since 1982, defined standard reference conditions as being 0 °C and 100 kPa (1 bar), in contrast to its old standard of 0 °C and 101.325 kPa (1 atm).[1]

Natural gas companies in Europe and South America have adopted 15 °C (59 °F) and 101.325 kPa (14.696 psi) as their standard gas volume reference conditions.[2][3][4] Also, the International Organization for Standardization (ISO), the United States Environmental Protection Agency (EPA) and National Institute of Standards and Technology (NIST) each have more than one definition of standard reference conditions in their various standards and regulations.

In Russia, State Standard GOST 2939-63 sets the following standard conditions: 20 °C (293.15 K), 760 mmHg (101325 N/m2) and zero humidity.

Standard reference conditions in current use
Temperature Absolute pressure Relative humidity Publishing or establishing entity
°C kPa %
0 100.000   IUPAC (STP)[5]
0 101.325   NIST,[6] ISO 10780,[7] formerly IUPAC[5]
15 101.325 0[8][9] ICAO's ISA,[9] ISO 13443,[8] EEA,[10] EGIA[11]
20 101.325   EPA,[12] NIST[13]
22 101.325 20-80 American Association of Physicists in Medicine[14]
25 101.325   EPA[15]
25 100.000   SATP[16]
20 100.000 0 CAGI[17]
15 100.000   SPE[18]
20 101.3 50 ISO 5011[19]
°F psi %
60 14.696   SPE,[18] U.S. OSHA,[20] SCAQMD[21]
60 14.73   EGIA,[11] OPEC,[22] U.S. EIA[23]
59 14.503 78 U.S. Army Standard Metro[24][a]
59 14.696 60 ISO 2314,[25] ISO 3977-2[26]
°F in Hg %
70 29.92 0 AMCA,[27][b] air density = 0.075 lbm/ft³. This AMCA standard applies only to air.
59 29.92   Federal Aviation Administration (FAA)[28]

Notes:

  • EGIA: Electricity and Gas Inspection Act (of Canada)
  • SATP: Standard Ambient Temperature and Pressure

International Standard Atmosphere

In aeronautics and fluid dynamics the "International Standard Atmosphere" (ISA) is a specification of pressure, temperature, density, and speed of sound at each altitude. The International Standard Atmosphere is representative of atmospheric conditions at mid latitudes. In the USA this information is specified the U.S. Standard Atmosphere which is identical to the "International Standard Atmosphere" at all altitudes up to 65,000 feet above sea level.[citation needed]

Standard laboratory conditions

Due to the fact that many definitions of standard temperature and pressure differ in temperature significantly from standard laboratory temperatures (e.g., 0 °C vs. ~25 °C), reference is often made to "standard laboratory conditions" (a term deliberately chosen to be different from the term "standard conditions for temperature and pressure", despite its semantic near identity when interpreted literally). However, what is a "standard" laboratory temperature and pressure is inevitably culture-bound, given that different parts of the world differ in climate, altitude and the degree of use of heat/cooling in the workplace. For example, schools in New South Wales, Australia use 25 °C at 100 kPa for standard laboratory conditions.[29]

ASTM International has published Standard ASTM E41- Terminology Relating to Conditioning and hundreds of special conditions for particular materials and test methods. Other standards organizations also have specialized standard test conditions.

Molar volume of a gas

It is equally as important to indicate the applicable reference conditions of temperature and pressure when stating the molar volume of a gas[30] as it is when expressing a gas volume or volumetric flow rate. Stating the molar volume of a gas without indicating the reference conditions of temperature and pressure has very little meaning and can cause confusion.

The molar volume of gases around STP can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below:

  • Vm = 8.3145 × 273.15 / 101.325 = 22.414 dm3/mol at 0 °C and 101.325 kPa
  • Vm = 8.3145 × 273.15 / 100.000 = 22.711 dm3/mol at 0 °C and 100 kPa
  • Vm = 8.3145 × 298.15 / 101.325 = 24.466 dm3/mol at 25 °C and 101.325 kPa
  • Vm = 8.3145 × 298.15 / 100.000 = 24.790 dm3/mol at 25 °C and 100 kPa
  • Vm = 10.7316 × 519.67 / 14.696 = 379.48 ft3/lbmol at 60 °F and 14.696 psi (or about 0.8366 ft3/gram mole)
  • Vm = 10.7316 × 519.67 / 14.730 = 378.61 ft3/lbmol at 60 °F and 14.73 psi

Technical literature can be confusing because many authors fail to explain whether they are using the ideal gas constant R, or the specific gas constant Rs. The relationship between the two constants is Rs = R / M, where M is the molecular weight of the gas.

The US Standard Atmosphere (USSA) uses 8.31432 m3·Pa/(mol·K) as the value of R. However, the USSA,1976 does recognize that this value is not consistent with the values of the Avogadro constant and the Boltzmann constant.[31]

See also

Notes

  1. ^ The pressure is specified as 750 mmHg. However, the mmHg is temperature dependent, as mercury expands as temperature goes up. Here the values for the 0–20°C range are given.
  2. ^ The standard is given as 29.92 inHg at an unspecified temperature. This most likely corresponds to a standard pressure of 101.325 kPa, converted into ~29.921 inHg at 32 °F (0 °C).

References

  1. ^ A. D. McNaught, A. Wilkinson (1997). Compendium of Chemical Terminology, The Gold Book (2nd ed.). Blackwell Science. ISBN 0-86542-684-8. Standard pressure: Chosen value of pressure denoted by po or p°. In 1982 IUPAC recommended the value 105 Pa, but prior to 1982 the value 101 325 Pa (= 1 atm) was usually used.
  2. ^ Gassco. "Concepts – Standard cubic meter (scm)". Retrieved 2008-07-25. Scm: The usual abbreviation for standard cubic metre – a cubic metre of gas under a standard condition, defined as an atmospheric pressure of 1.01325 bar and a temperature of 15°C. This unit provides a measure for gas volume. [dead link]
  3. ^ Nord Stream (October 2007). "Status of the Nord Stream pipeline route in the Baltic Sea" (PDF). Retrieved 2008-07-25. bcm: Billion Cubic Meter (standard cubic metre – a cubic metre of gas under a standard condition, defined as an atmospheric pressure of 1 atm and a temperature of 15 °C.)
  4. ^ Metrogas (June 2004). "Natural gas purchase and sale agreement". Retrieved 2008-07-25. Natural gas at standard condition shall mean the quantity of natural gas, which at a temperature of fifteen (15) Celsius degrees and a pressure of 101.325 kilopascals occupies the volume of one (1) cubic meter.
  5. ^ a b Cite error: The named reference IUPAC was invoked but never defined (see the help page).
  6. ^ NIST (1989). "NIST Standard Reference Database 124 – Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions". Retrieved 08-07-25. If you want the program to treat the material as an ideal gas, the density will be assumed given by M/V, where M is the gram molecular weight of the gas and V is the mol volume of 22414 cm3 at standard conditions (0 deg C and 1 atm). {{cite web}}: Check date values in: |accessdate= (help)[dead link]
  7. ^ ISO (1994). "ISO 10780:1994 : Stationary source emissions – Measurement of velocity and volume flowrate of gas streams in ducts".
  8. ^ a b Natural gas – Standard reference conditions (ISO 13443). Geneva, Switzerland: International Organization for Standardization. 1996.
  9. ^ a b Robert C. Weast (Editor) (1975). Handbook of Physics and Chemistry (56th ed.). CRC Press. pp. F201–F206. ISBN 0-87819-455-X. {{cite book}}: |author= has generic name (help)
  10. ^ Extraction, First Treatment and Loading of Liquid & Gaseous Fossil Fuels (Emission Inventory Guidebook B521, Activities 050201 – 050303) (PDF). Copenhagen, Denmark: European Environmental Agency. September 1999.
  11. ^ a b "Electricity and Gas Inspection Act", SOR/86-131 (defines a set of standard conditions for Imperial units and a different set for metric units)  Canadian Laws
  12. ^ "Standards of Performance for New Sources", 40 CFR—Protection of the Environment, Chapter I, Part 60, Section 60.2, 1990  New Source Performance Standards
  13. ^ "Design and Uncertainty for a PVTt Gas Flow Standard" (PDF). Journal of Research of the National Institute of Standards and Technology. 108 (1). 2003.
  14. ^ "AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams" (PDF). Medical Physics. 26 (9). 1999.
  15. ^ "National Primary and Secondary Ambient Air Quality Standards", 40 CFR—Protection of the Environment, Chapter I, Part 50, Section 50.3, 1998  National Ambient Air Standards
  16. ^ National Bureau of Standards (NBS) (1982). "Table of Chemical Thermodynamic Properties". Journal of Physics and Chemical Reference Data. 11 (Supplement 2).
  17. ^ "Glossary". Cleveland, OH, USA: Compressed Air and Gas Institute. 2002.
  18. ^ a b "The SI Metric System of Units and SPE Metric Standard" (PDF). Society of Petroleum Engineers. Notes for Table 2.3, on PDF page 25 of 42 PDF pages, define two different sets of reference conditions, one for the standard cubic foot and one for the standard cubic meter.
  19. ^ Air Intake Filters (ISO 5011:2002). Geneva, Switzerland: International Organization for Standardization. 2002.
  20. ^ "Storage and Handling of Liquefied Petroleum Gases" and "Storage and Handling of Anhydrous Ammonia", 29 CFR—Labor, Chapter XVII—Occupational Safety and Health Administration, Part 1910, Sect. 1910.110 and 1910.111, 1993  Storage/Handling of LPG
  21. ^ "Rule 102, Definition of Terms (Standard Conditions)", Amended December 2004, South Coast Air Quality Management District, Los Angeles, California, USA  SCAQMD Rule 102
  22. ^ Omar Ibrahim, ed. (2004). "Annual Statistical Bulletin" (PDF). Vienna, Austria: Organization of the Petroleum Exporting Countries.
  23. ^ Energy Information Administration (December 2005). "Natural Gas Annual 2004 (DOE/EIA-0131(04))" (PDF). Washington, D.C., USA: U.S. Department of Energy.
  24. ^ Sierra Bullets L.P. "Chapter 3 – Effects of Altitude and Atmospheric Conditions (Exterior Ballistics Section)". Rifle and Handgun Reloading Manual (5 ed.). Sedalia, MO, USA-.
  25. ^ Gas turbines – Acceptance tests (ISO 2314:1989) (2 ed.). Geneva, Switzerland: International Organization for Standardization. 1989.
  26. ^ Gas turbines – Procurement – Part 2: Standard reference conditions and ratings (ISO 3977-2:1997). Geneva, Switzerland: International Organization for Standardization. 1997.
  27. ^ ANSI/AMCA Standard 210, "Laboratory Methods Of Testing Fans for Aerodynamic Performance Rating", as implied by http://www.greenheck.com/pdf/centrifugal/Plug.pdf when accessed on October 17, 2007
  28. ^ "Chapter 3, Principles of Flight". Pilot's Handbook of Aeronautical Knowledge (PDF). Federal Aviation Administration.
  29. ^ Peter Gribbon (2001). Excel HSC Chemistry Pocket Book Years 11–12. Pascal Press. ISBN 1-74020-303-8.
  30. ^ "Fundamental Physical Properties: Molar Volumes (CODATA values for ideal gases)". NIST.
  31. ^ U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976.