Isotopes of oganesson
Ununoctium (Uuo) is an artificial element created in particle colliders, and thus a standard atomic mass cannot be given. Like all artificial elements, it has no stable isotopes. The first (and so far only) isotope to be synthesized was 294Uuo in 2006; it has a half-life of 890 microseconds.
Table
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s) | daughter isotope(s) |
nuclear spin |
---|---|---|---|---|---|---|---|
294Uuo | 118 | 176 | 294.21392(71)# | 890 µs | α | 290Lv |
Notes
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values from Ame2003 denote one standard deviation. Values from IUPAC are expanded uncertainties.
Theoretical
This section needs to be updated.(May 2014) |
Theoretical calculations done on the synthetic pathways for, and the half-life of, other isotopes have shown that some could be slightly more stable than the synthesized isotope 294Uuo, most likely 293Uuo, 295Uuo, 296Uuo, 297Uuo, 298Uuo, 300Uuo and 302Uuo.[1][2][2] Of these, 297Uuo, might provide the best chances for obtaining longer-lived nuclei,[1][2] and thus might become the focus of future work with this element. Some isotopes with many more neutrons, such as some located around 313Uuo, could also provide longer-lived nuclei.[3]
Target-projectile combinations leading to Z=118 compound nuclei
The below table contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=118.
Target | Projectile | CN | Attempt result |
---|---|---|---|
160Gd | 136Xe | 296Uuo | Reaction yet to be attempted |
208Pb | 86Kr | 294Uuo | Failure to date |
232Th | 64Ni | 296Uuo | Reaction yet to be attempted |
238U | 58Fe | 296Uuo | Reaction yet to be attempted |
244Pu | 54Cr | 298Uuo | Reaction yet to be attempted |
248Cm | 50Ti | 298Uuo | Reaction yet to be attempted |
250Cm | 50Ti | 300Uuo | Reaction yet to be attempted |
249Cf | 48Ca | 297Uuo | Successful reaction |
252Cf | 48Ca | 300Uuo | Reaction yet to be attempted |
257Fm | 40Ar | 297Uuo | Reaction yet to be attempted |
Theoretical calculations on evaporation cross sections
The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.
DNS = Di-nuclear system ; σ = cross section
Target | Projectile | CN | Channel (product) | σ max | Model | Ref |
---|---|---|---|---|---|---|
208Pb | 86Kr | 294Uuo | 1n (293Uuo) | 0.1 pb | DNS | [4] |
208Pb | 85Kr | 293Uuo | 1n (292Uuo) | 0.18 pb | DNS | [4] |
252Cf | 48Ca | 300Uuo | 3n (297Uuo) | 1.2 pb | DNS | [5] |
251Cf | 48Ca | 299Uuo | 3n (296Uuo) | 1.2 pb | DNS | [5] |
249Cf | 48Ca | 297Uuo | 3n (294Uuo) | 0.3 pb | DNS | [5] |
References
- Isotope masses from:
- M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu; et al. (2012). "The AME2012 atomic mass evaluation (II). Tables, graphs and references" (PDF). Chinese Physics C,. 36 (12): 1603–2014. Bibcode:2012ChPhC..36....3M. doi:10.1088/1674-1137/36/12/003.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) - G. Audi, A. H. Wapstra, C. Thibault, J. Blachot and O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729 (1): 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)
- M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu; et al. (2012). "The AME2012 atomic mass evaluation (II). Tables, graphs and references" (PDF). Chinese Physics C,. 36 (12): 1603–2014. Bibcode:2012ChPhC..36....3M. doi:10.1088/1674-1137/36/12/003.
- ^ a b P. Roy Chowdhury, C. Samanta, and D. N. Basu (January 26, 2006). "α decay half-lives of new superheavy elements". Phys. Rev. C. 73: 014612. arXiv:nucl-th/0507054. Bibcode:2006PhRvC..73a4612C. doi:10.1103/PhysRevC.73.014612. Retrieved 2008-01-18.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b c C. Samanta, P. Roy Chowdhury and D. N. Basu (April 6, 2007). "Predictions of alpha decay half lives of heavy and superheavy elements". Nuclear Physics A. 789 (1–4): 142–154. arXiv:nucl-th/0703086. Bibcode:2007NuPhA.789..142S. doi:10.1016/j.nuclphysa.2007.04.001. Retrieved 2008-01-18. Cite error: The named reference "odd" was defined multiple times with different content (see the help page).
- ^ S B Duarte, O A P Tavares, M Gonçalves, O Rodríguez, F Guzmán, T N Barbosa, F García and A Dimarco (2004). "Half-life predictions for decay modes of superheavy nuclei". J. Phys. G: Nucl. Part. Phys. 30 (10): 1487–1494. Bibcode:2004JPhG...30.1487D. doi:10.1088/0954-3899/30/10/014. Retrieved 2008-01-18.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b Feng, Zhao-Qing; Jin, Gen-Ming; Li, Jun-Qing; Scheid, Werner (2007). "Formation of superheavy nuclei in cold fusion reactions". Physical Review C. 76 (4): 044606. arXiv:0707.2588. Bibcode:2007PhRvC..76d4606F. doi:10.1103/PhysRevC.76.044606.
- ^ a b c Feng, Z; Jin, G; Li, J; Scheid, W (2009). "Production of heavy and superheavy nuclei in massive fusion reactions". Nuclear Physics A. 816 (1–4): 33. arXiv:0803.1117. Bibcode:2009NuPhA.816...33F. doi:10.1016/j.nuclphysa.2008.11.003.