Jump to content

Mean piston speed

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 63.160.65.14 (talk) at 00:20, 30 June 2015. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The comparison of mean piston speed (black line) with real piston speed (color lines). Diagram shows one stroke from BDC to TDC. Revolution = 1.000 min-1, stroke = 88 mm. The connecting rod ratio l/r varies: 3 - red, 4 - green, 5,5 - blue

The mean piston speed is the average speed of the piston in a reciprocating engine. It is a function of stroke and RPM. There is a factor of 2 in the equation to account for one stroke to occur in 1/2 of a crank revolution (or alternatively: two strokes per one crank revolution) and a '60' to convert seconds from minutes in the RPM term.

MPS = 2 * Stroke * RPM / 60

For example, a piston in an automobile engine which has a stroke of 90 mm will have a mean speed at 3000 rpm of 2 * (90 / 1000) * 3000 / 60 = 9 m/s.

It is a good indicator of the class and performance of an engine relative to its competitors. Honda S2000 had the highest piston speed for any production car (25.2 m/s) until the B7 Audi RS4 (2006-2008) debuted. This Audi was powered by a 4.2-liter naturally aspirated V8 (92.7mm stroke; 8250 RPM redline), resulting in a mean piston speed of 25.5 m/s. The Audi was in turn beaten by the 2015-2016 Ford Mustang Shelby GT350, which has a 5.2-liter naturally aspirated V8 (93.0mm stroke; 8250 RPM redline) with a mean piston speed of 25.6 m/s.


Corrected Piston Speed Frederick Lanchester and Janke and King

Corrected Piston speed is a method to more accurately represent stress on an engine, and is calculated as

mean piston speed divided by the square root of the stroke/bore ratio

http://autos.groups.yahoo.com/group/mc-engine/message/2928 Classic Racing Engines Karl Ludvigsen (Glossay)


Classes

low speed diesels
~8.5 m/s for marine and electric power generation applications
medium speed diesels
~11 m/s for trains or trucks
high speed diesel
~14 m/s for automobile engines
medium speed petrol
~16 m/s for automobile engines
high speed petrol
~20–25 m/s for sport automobile engines or motorcycles
competition
Some extreme examples are NASCAR Sprint Cup Series and Formula one engines with ~25 m/s and Top Fuel engines ~30 m/s