Jump to content

Lactic acid

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 82.44.149.214 (talk) at 20:18, 20 October 2015 (Blood testing). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Lactic acid
Skeletal formula of L-lactic acid
Skeletal formula of L-lactic acid
L-Lactic acid
Ball-and-stick model of L-lactic acid
Ball-and-stick model of L-lactic acid

DL-Lactic acid
Names
IUPAC name
2-Hydroxypropanoic acid
Other names
Milk acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.017 Edit this at Wikidata
E number E270 (preservatives)
UNII
  • InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)/t2-/m0/s1 checkY
    Key: JVTAAEKCZFNVCJ-REOHCLBHSA-N checkY
  • CC(O)C(=O)O
Properties
C3H6O3
Molar mass 90.07948
Melting point L: 53 °C
D: 53 °C
D/L: 16.8 °C
Boiling point 122 °C (252 °F; 395 K) @ 12 mmHg
Acidity (pKa) 3.86[1]
Thermochemistry
1361.9 kJ/mol, 325.5 kcal/mol, 15.1 kJ/g, 3.61 kcal/g
Related compounds
Other anions
lactate
acetic acid
glycolic acid
propionic acid
3-hydroxypropanoic acid
malonic acid
butyric acid
hydroxybutyric acid
Related compounds
1-propanol
2-propanol
propionaldehyde
acrolein
sodium lactate
Hazards
GHS labelling:
class="wikitable collapsible" style="min-width: 50em;"
GHS hazard pictograms[2]
Pictogram Code Symbol description Image link
GHS01: Explosive GHS01 {{GHS exploding bomb}} Image:GHS-pictogram-explos.svg Explosive
GHS02: Flammable GHS02 {{GHS flame}} Image:GHS-pictogram-flamme.svg
GHS03: Oxidizing GHS03 {{GHS flame over circle}} Image:GHS-pictogram-rondflam.svg
GHS04: Compressed Gas GHS04 {{GHS gas cylinder}} Image:GHS-pictogram-bottle.svg
GHS05: Corrosive GHS05 {{GHS corrosion}} Image:GHS-pictogram-acid.svg Corrosive
GHS06: Toxic GHS06 {{GHS skull and crossbones}} Image:GHS-pictogram-skull.svg Accute Toxic
GHS07: Exclamation mark GHS07 {{GHS exclamation mark}} Image:GHS-pictogram-exclam.svg Irritant
GHS08: Health hazard GHS08 {{GHS health hazard}} Image:GHS-pictogram-silhouette.svg Health Hazard
GHS09: Environmental hazard GHS09 {{GHS environment}} Image:GHS-pictogram-pollu.svg Environment

See also

|-


|-

| style="padding-left:1em;" |

| H315, H318[3]

|-

|-

| style="padding-left:1em;" |

| P280, P305+P351+P338[3]

|-



| colspan=2 style="text-align:left; background:#f8eaba; border:1px solid #a2a9b1;" |

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

|-

|}

Lactic acid is an organic compound with the formula CH3CH(OH)CO2H. It is a white, water-soluble solid or clear liquid that is produced both naturally and synthetically. With a hydroxyl group adjacent to the carboxyl group, lactic acid is classified as an alpha hydroxy acid (AHA). In the form of its conjugate base called lactate, it plays a role in several biochemical processes.

In solution, it can ionize a proton from the carboxyl group, producing the lactate ion CH3CH(OH)CO2. Compared to acetic acid, its pKa is 1 unit less, meaning lactic acid deprotonates ten times more easily than acetic acid does. This higher acidity is the consequence of the intramolecular hydrogen bonding between the α-hydroxyl and the carboxylate group.

Lactic acid is chiral, consisting of two optical isomers. One is known as L-(+)-lactic acid or (S)-lactic acid and the other, its mirror image, is D-(−)-lactic acid or (R)-lactic acid. A mixture of the two in equal amounts is called DL-lactic acid.

Lactic acid is hygroscopic. DL-lactic acid is miscible with water and with ethanol above its melting point which is around 17 or 18 °C. D-lactic acid and L-lactic acid have a higher melting point.

In animals, L-lactate is constantly produced from pyruvate via the enzyme lactate dehydrogenase (LDH) in a process of fermentation during normal metabolism and exercise. It does not increase in concentration until the rate of lactate production exceeds the rate of lactate removal, which is governed by a number of factors, including monocarboxylate transporters, concentration and isoform of LDH, and oxidative capacity of tissues. The concentration of blood lactate is usually 1–2 mmol/L at rest, but can rise to over 20 mmol/L during intense exertion.[citation needed]

In industry, lactic acid fermentation is performed by lactic acid bacteria, which convert simple carbohydrates such as glucose, sucrose, or galactose to lactic acid. These bacteria can also grow in the mouth; the acid they produce is responsible for the tooth decay known as caries.[4][5][6][7]

In medicine, lactate is one of the main components of lactated Ringer's solution and Hartmann's solution. These intravenous fluids consist of sodium and potassium cations along with lactate and chloride anions in solution with distilled water, generally in concentrations isotonic with human blood. It is most commonly used for fluid resuscitation after blood loss due to trauma, surgery, or burn injury.

History

Lactic acid was refined for the first time by the Swedish chemist Carl Wilhelm Scheele in 1780 from sour milk. The name reflects the lact- combining form derived from the Latin word for milk. In 1808, Jöns Jacob Berzelius discovered that lactic acid (actually L-lactate) also is produced in muscles during exertion.[8] Its structure was established by Johannes Wislicenus in 1873.

In 1856, Louis Pasteur discovered Lactobacillus and its role in the making of lactic acid. Lactic acid started to be produced commercially by the German pharmacy Boehringer Ingelheim in 1895.

In 2006, global production of lactic acid reached 275,000 tonnes with an average annual growth of 10%.[9]

Exercise and lactate

During power exercises such as sprinting, when the rate of demand for energy is high, glucose is broken down and oxidized to pyruvate, and lactate is then produced from the pyruvate faster than the body can process it, causing lactate concentrations to rise. The production of lactate is beneficial because it regenerates NAD+ (pyruvate is reduced to lactate while NADH is oxidized to NAD+), which is used up in oxidation of glyceraldehyde 3-phosphate during production of pyruvate from glucose, and this ensures that energy production is maintained and exercise can continue. (During intense exercise, the respiratory chain cannot keep up with the amount of hydrogen atoms that join to form NADH, and cannot regenerate NAD+ quickly enough.)

The resulting lactate can be used in two ways:

However, lactate is continually formed even at rest and during moderate exercise. This occurs due to metabolism in red blood cells that lack mitochondria, and limitations resulting from the enzyme activity that occurs in muscle fibers having a high glycolytic capacity.[11]

The production of H+ during exercise,[12] has been claimed to be a "construct" or myth, pointing out that part of the H+ comes from ATP hydrolysis (ATP−4 + H2O → ADP−3 + HPO4−2 + H+), and that reducing pyruvate to lactate (pyruvate + NADH + H+ → lactate + NAD+) actually consumes H+. Lindinger et al.[13] claimed that Robergs et al. ignored the causative factors of the increase in [H+]. The production of lactate from a neutral molecule would increase [H+] to maintain electroneutrality. However, lactate is produced from pyruvate, which has the same charge: "Lactate− production is not associated with a stoichiometrically equivalent net production of protons (H+)".[13]
It is pyruvate production from neutral glucose that generates H+:

C6H12O6 + 2 NAD+ + 2 ADP−3 + 2 HPO4−2 → 2 CH3COCO2 + 2 H+ + 2 NADH + 2 ATP−4 + 2 H2O

Subsequent lactate production absorbs these protons:

2 CH3COCO2 + 2 H+ + 2 NADH → 2 CH3CH(OH)CO2 + 2 NAD+

Overall:

C6H12O6 + 2 NAD+ + 2 ADP−3 + 2 HPO4−2 → 2 CH3COCO2 + 2 H+ + 2 NADH + 2 ATP−4 + 2 H2O → 2 CH3CH(OH)CO2 + 2 NAD+ + 2 ATP−4 + 2 H2O

Although the reaction glucose → 2 lactate + 2 H+ releases two H+ when viewed on its own, the H+ are absorbed in the production of ATP. The absorbed acidity is released during subsequent hydrolysis of ATP: ATP−4 + H2O → ADP−3 + HPO4−2 + H+. Overall, [H+] does increase.

The generation of CO2 during respiration also causes an increase in [H+].

Brain metabolism

Although glucose is usually assumed to be the main energy source for living tissues, there are some indications that it is lactate, and not glucose, that is preferentially metabolized by neurons in the brain of several mammalian species (the notable ones being mice, rats, and humans).[14][15] According to the lactate-shuttle hypothesis, glial cells are responsible for transforming glucose into lactate, and for providing lactate to the neurons.[16][17] Because of this local metabolic activity of glial cells, the extracellular fluid immediately surrounding neurons strongly differs in composition from the blood or cerebro-spinal fluid, being much richer with lactate, as was found in microdialysis studies.[14]

Some evidence suggests that lactate is important at early stages of development for brain metabolism in prenatal and early postnatal subjects, with lactate at these stages having higher concentrations in body liquids, and being utilized by the brain preferentially over glucose.[14] It was also hypothesized that lactate may exert a strong action over GABAergic networks in the developing brain, making them more inhibitory than it was previously assumed,[18] acting either through better support of metabolites,[14] or alterations in base intracellular pH levels,[19][20] or both.[21]

Studies of brain slices of mice show that beta-hydroxybutyrate, lactate, and pyruvate act as oxidative energy substrates, causing an increase in the NAD(P)H oxidation phase, that glucose was insufficient as an energy carrier during intense synaptic activity and, finally, that lactate can be an efficient energy substrate capable of sustaining and enhancing brain aerobic energy metabolism in vitro.[22] The study "provides novel data on biphasic NAD(P)H fluorescence transients, an important physiological response to neural activation that has been reproduced in many studies and that is believed to originate predominately from activity-induced concentration changes to the cellular NADH pools."[23]

Blood testing

Reference ranges for blood tests, comparing lactate content (shown in violet at center-right) to other constituents in human blood.

Blood tests for lactate are performed to determine the status of the acid base homeostasis in the body. Blood sampling for this purpose is often by arterial blood sampling (even if it is more difficult than venipuncture), because lactate differs substantially between arterial and venous levels, and the arterial level is more representative for this purpose. Template:Citation needed, disputed

Reference ranges
Lower limit Upper limit Unit
Venous 4.5[24] 19.8[24] mg/dL
0.5[25] 2.2[25] mmol/L
Arterial 4.5[24] 14.4[24] mg/dL
0.5[25] 1.6[25] mmol/L

During childbirth, lactate levels in the fetus can be quantified by fetal scalp blood testing.

Polymer precursor

Two molecules of lactic acid can be dehydrated to the lactone lactide. In the presence of catalysts lactide polymerize to either atactic or syndiotactic polylactide (PLA), which are biodegradable polyesters. PLA is an example of a plastic that is not derived from petrochemicals.

Pharmaceutical and cosmetic applications

Lactic acid is also employed in pharmaceutical technology to produce water-soluble lactates from otherwise-insoluble active ingredients. It finds further use in topical preparations and cosmetics to adjust acidity and for its disinfectant and keratolytic properties.

Foods

Lactic acid is found primarily in sour milk products, such as koumiss, laban, yogurt, kefir, some cottage cheeses, and kombucha, salted butter, margarine, jpta u rock. The casein in fermented milk is coagulated (curdled) by lactic acid. Lactic acid is also responsible for the sour flavor of sourdough breads.

In beer brewing some lesser-known styles of beer (Sour beer) purposely contain lactic acid. Most commonly this is produced naturally by various strains of bacteria. These bacteria ferment sugars into acids, unlike yeast, who ferment sugar into ethanol. One such style are Belgian Lambics. After cooling the wort, yeast and bacteria are allowed to “fall” into the open fermenters. Most brewers of more common beer styles would ensure no such bacteria are allowed to enter the fermenter. Other sour styles of beer include: Berliner weisse, Flanders red and American wild ale. [26][27]

In winemaking, a bacterial process, natural or controlled, is often used to convert the naturally present malic acid to lactic acid, to reduce the sharpness and for other flavor-related reasons. This malolactic fermentation is undertaken by the family of lactic acid bacteria.

As a food additive it is approved for use in the EU,[28] USA[29] and Australia and New Zealand;[30] it is listed by its INS number 270 or as E number E270. Lactic acid is used as a food preservative, curing agent, and flavoring agent.[31] It is an ingredient in processed foods and is used as a decontaminant during meat processing.[32] Lactic acid is produced commercially by fermentation of carbohydrates such as glucose, sucrose, or lactose, or by chemical synthesis.[31] Carbohydrate sources include corn, beets, and cane sugar.[33]

Detergents

Lactic acid has gained importance in the detergent industry the last decade. It is a good descaler, soap-scum remover, and a registered anti-bacterial agent. It is also economically beneficial as well as part of a trend toward environmentally safer and natural ingredients.[34]

Mosquito lure

Lactic acid, along with ammonium bicarbonate, is used in the Lurex brand mosquito attractant.[35]

See also

References

  1. ^ Dawson, R. M. C. et al., Data for Biochemical Research, Oxford, Clarendon Press, 1959.
  2. ^ "Globally Harmonized System of Classification and Labelling of Chemicals" (pdf). 2021. Annex 3: Codification of Statements and Pictograms (pp 268–385).
  3. ^ a b c Sigma-Aldrich Co., DL-Lactic acid. Retrieved on 2013-07-20.
  4. ^ Badet, C; Thebaud, NB (2008). "Ecology of Lactobacilli in the Oral Cavity: A Review of Literature". The open microbiology journal. 2: 38–48. doi:10.2174/1874285800802010038. PMC 2593047. PMID 19088910.
  5. ^ Nascimento, MM; Gordan, VV; Garvan, CW; Browngardt, CM; Burne, RA (2009). "Correlations of oral bacterial arginine and urea catabolism with caries experience". Oral microbiology and immunology. 24 (2): 89–95. doi:10.1111/j.1399-302X.2008.00477.x. PMC 2742966. PMID 19239634.
  6. ^ Aas, JA; Griffen, AL; Dardis, SR; Lee, AM; Olsen, I; Dewhirst, FE; Leys, EJ; Paster, BJ (2008). "Bacteria of Dental Caries in Primary and Permanent Teeth in Children and Young Adults". Journal of clinical microbiology. 46 (4): 1407–17. doi:10.1128/JCM.01410-07. PMC 2292933. PMID 18216213.
  7. ^ Caufield, PW; Li, Y; Dasanayake, A; Saxena, D (2007). "Diversity of Lactobacilli in the Oral Cavities of Young Women with Dental Caries". Caries Res. 41 (1): 2–8. doi:10.1159/000096099. PMC 2646165. PMID 17167253.
  8. ^ Roth, Stephen M. "Why does lactic acid build up in muscles? And why does it cause soreness?". Retrieved 23 January 2006.
  9. ^ NNFCC Renewable Chemicals Factsheet: Lactic Acid
  10. ^ McArdle, W. D., Katch, F. I., & Katch, V. L. (2010). Exercise physiology: Energy, nutrition, and human performance. Wolters Kluwer/Lippincott Williams & Wilkins Health. ISBN 978-0-683-05731-7. ISBN 0-683-05731-6.{{cite book}}: CS1 maint: multiple names: authors list (link)
  11. ^ McArdle, Katch & Katch (2010). Exercise Physiology: Energy, Nutrition, and Human Performance. Wolters Kluwer/Lippincott Williams & Wilkins Health. ISBN 978-0-683-05731-7. ISBN 0-683-05731-6.
  12. ^ Robergs, RA; Ghiasvand, F; Parker, D (2004). "Biochemistry of exercise-induced metabolic acidosis" (PDF). Am J Physiol Regul Integr Comp Physiol. 287 (3): R502 – R516. doi:10.1152/ajpregu.00114.2004. PMID 15308499.
  13. ^ a b Lindinger, M. I. (2004). "Applying physicochemical principles to skeletal muscle acid-base status". Am J Physiol Regul Integr Comp Physiol. 289 (3): R890–94. doi:10.1152/ajpregu.00225.2005.
  14. ^ a b c d Zilberter Y, Zilberter T, Bregestovski P (September 2010). "Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis". Trends Pharmacol. Sci. 31 (9): 394–401. doi:10.1016/j.tips.2010.06.005. PMID 20633934.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (May 2011). "In vivo evidence for lactate as a neuronal energy source". J. Neurosci. 31 (20): 7477–85. doi:10.1523/JNEUROSCI.0415-11.2011. PMID 21593331.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ Gladden LB (July 2004). "Lactate metabolism: a new paradigm for the third millennium". J. Physiol. (Lond.). 558 (Pt 1): 5–30. doi:10.1113/jphysiol.2003.058701. PMC 1664920. PMID 15131240.
  17. ^ Pellerin L; Bouzier-Sore AK; Aubert A; et al. (September 2007). "Activity-dependent regulation of energy metabolism by astrocytes: an update". Glia. 55 (12): 1251–62. doi:10.1002/glia.20528. PMID 17659524. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  18. ^ Holmgren CD, Mukhtarov M, Malkov AE, Popova IY, Bregestovski P, Zilberter Y (February 2010). "Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro". J. Neurochem. 112 (4): 900–12. doi:10.1111/j.1471-4159.2009.06506.x. PMID 19943846.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^ Tyzio R; Allene C; Nardou R; et al. (January 2011). "Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate". J. Neurosci. 31 (1): 34–45. doi:10.1523/JNEUROSCI.3314-10.2011. PMID 21209187. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  20. ^ Ruusuvuori E, Kirilkin I, Pandya N, Kaila K (November 2010). "Spontaneous network events driven by depolarizing GABA action in neonatal hippocampal slices are not attributable to deficient mitochondrial energy metabolism". J. Neurosci. 30 (46): 15638–42. doi:10.1523/JNEUROSCI.3355-10.2010. PMID 21084619.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Khakhalin AS (May 2011). "Questioning the depolarizing effects of GABA during early brain development". J Neurophysiol. 106 (3): 1065–7. doi:10.1152/jn.00293.2011. PMID 21593390.
  22. ^ Zilberter, Yuri; Bregestovski, Piotr; Mukhtarov, Marat; Ivanov, Anton (2011). "Lactate Effectively Covers Energy Demands during Neuronal Network Activity in Neonatal Hippocampal Slices". Frontiers in Neuroenergetics. 3: 2. doi:10.3389/fnene.2011.00002. PMC 3092068. PMID 21602909.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  23. ^ Kasischke, Karl (2011). "Lactate Fuels the Neonatal Brain". Frontiers in Neuroenergetics. 3. doi:10.3389/fnene.2011.00004.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  24. ^ a b c d Blood Test Results - Normal Ranges Bloodbook.Com
  25. ^ a b c d Derived from mass values using molar mass of 90.08 g/mol
  26. ^ https://www.morebeer.com/articles/brewing_with_lactic_acid_bacteria
  27. ^ Lambic (Classic Beer Style) - Jean Guinard
  28. ^ UK Food Standards Agency: "Current EU approved additives and their E Numbers". Retrieved 2011-10-27.
  29. ^ US Food and Drug Administration: "Listing of Food Additives Status Part II". Retrieved 2011-10-27.
  30. ^ Australia New Zealand Food Standards Code"Standard 1.2.4 - Labelling of ingredients". Retrieved 2011-10-27.
  31. ^ a b "Listing of Specific Substances Affirmed as GRAS:Lactic Acid". US FDA. Retrieved 20 May 2013.
  32. ^ "Purac Carcass Applications". Purac. Retrieved 20 May 2013.
  33. ^ "Agency Response Letter GRAS Notice No. GRN 000240". FDA. US FDA. Retrieved 20 May 2013.
  34. ^ http://www.lactic-acid.com/lactic_acid_in_non-food.html
  35. ^ http://www.mosquitomagnet.com/resource/uploads/mosquito-magnet-lurex3-msds.pdf