Jump to content

Talk:Open and closed maps

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 67.198.37.16 (talk) at 18:40, 30 June 2016 (Example). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

WikiProject iconMathematics C‑class Low‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
CThis article has been rated as C-class on Wikipedia's content assessment scale.
LowThis article has been rated as Low-priority on the project's priority scale.

Sufficient for continuity?

Regarding "...a function f : X → Y is continuous...if the preimage of every closed set of Y is closed in X." at the end of the second paragraph:

Forgive me if I'm mistaken, but in general, preimages of closed sets being closed does not ensure continuity. E.g. for f: [0,1] -> (0,1] where f(x) = x (for x != 0) and f(0) = 1/2, f is not continuous. Perhaps something is assumed that I missed? 203.150.100.189 08:38, 20 March 2007 (UTC)[reply]

Please read again: "if the preimage of every open set of Y is open in X". For your example, the preimage of ]1/4,3/4[ is then {0}U]1/4,3/4[ which is not open.--133.11.80.84 07:05, 3 September 2007 (UTC)[reply]
203: Pass to complements. Suppose f is continuous and take a closed set V. Then the complement of V, which I'll denote C(V), is open, so it pulls back to an open set. But the preimage of V is the complement of the preimage of C(V), so it's closed. The other way: Suppose f pulls back closed sets to closed sets. A similar argument gives you that f pulls back open sets to open sets, so f is continuous. HTH. Druiffic (talk) 04:26, 15 November 2008 (UTC)Druiffic[reply]
Yeah, but Druiffic, 203's example proves you wrong! consider the closed set V=[1/8,1/4] u [3/4,1] Then C(V) = (0,1/8) u (1/4,3/4) is clearly open. Next, f-1(C(V))= (0,1/8) u (1/4,3/4) u {0} = [0,1/8) u (1/4,3/4) is clearly NOT open! Thus, although f pulls back closed sets just fine, this f is not continuous and clearly fails to pull back open complements into open complements.67.198.37.16 (talk) 17:01, 30 June 2016 (UTC)[reply]
Silly me -- I am wrong. In the target space, the interval (0,1/8) is NOT open -- it is half-closed. That is, in the target space, the interval (0,1/8] is fully closed, and it does not pull back to a closed set. This is a subtle point: the definition of a closed set in the target space is NOT the same as the definition of a closed set in the natural topology on the reals -- in particular, the entire target space is considered to be closed. Its an interesting, illuminating failed counter-example, illustrating that one mst be careful to use the definition of "open" and "closed" correctly. 67.198.37.16 (talk) 18:17, 30 June 2016 (UTC)[reply]

Surjective claim

Unless I'm going crazy, "An open map is also closed if and only if it is surjective" is definitely not true. Just include X into two (disjoint) copies of itself. —Preceding unsigned comment added by 24.19.0.156 (talk) 00:54, 8 February 2011 (UTC)[reply]

This statement appears to have been removed from the article with this edit, about a week after you complained. It was added in this edit, about 3 weeks before you complained. So it was a short-lived mistake. 67.198.37.16 (talk) 18:27, 30 June 2016 (UTC)[reply]

Example

I was wondering if isometries in metric spaces are open. — Preceding unsigned comment added by Noix07 (talkcontribs) 15:35, 16 December 2013 (UTC)[reply]

Well, wouldn't an isometry be a homeomorphism? If so, then note that homeomorphisms are open.67.198.37.16 (talk) 18:40, 30 June 2016 (UTC)[reply]