Jump to content

TWA Flight 800

Coordinates: 40°39′N 72°38′W / 40.650°N 72.633°W / 40.650; -72.633
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 155.178.180.6 (talk) at 17:57, 5 September 2016 (Accident flight). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

TWA Flight 800
The reconstructed wreckage of TWA 800, stored by the NTSB, May 1997
Accident
DateJuly 17, 1996 (1996-07-17)
SummaryFuel tank explosion
SiteMoriches Inlet
near East Moriches, New York
Aircraft
Aircraft typeBoeing 747-131
OperatorTrans World Airlines
RegistrationN93119
Flight originJohn F. Kennedy Int'l Airport
New York City
StopoverParis-Charles de Gaulle Airport
Paris
DestinationLeonardo da Vinci Airport
Rome
Passengers212
Crew18
Fatalities230 (all)
Survivors0

Trans World Airlines Flight 800 (TWA 800) was a Boeing 747-100 which exploded and crashed into the Atlantic Ocean near East Moriches, New York, on July 17, 1996, at about 8:31 p.m. EDT, 12 minutes after takeoff from John F. Kennedy International Airport on a scheduled international passenger flight to Rome, with a stopover in Paris.[1]: 1  All 230 people on board were killed in the third-deadliest aviation accident in U.S. territory.

Accident investigators from the National Transportation Safety Board (NTSB) traveled to the scene, arriving the following morning,[1]: 313  and there was much initial speculation that a terrorist attack was the cause of the crash.[2][3][4] Consequently, the Federal Bureau of Investigation (FBI) initiated a parallel criminal investigation.[5] Sixteen months later, the FBI announced that no evidence had been found of a criminal act and closed its active investigation.[6]

The four-year NTSB investigation concluded with the approval of the Aircraft Accident Report on August 23, 2000, ending the most extensive, complex, and costly air disaster investigation in U.S. history.[7][8] The report's conclusion was that the probable cause of the accident was an explosion of flammable fuel/air vapors in a fuel tank, and, although it could not be determined with certainty, the most likely cause of the explosion was a short circuit.[1]: xvi  As a result of the investigation, new requirements were developed for aircraft to prevent future fuel tank explosions.[9]

TWA Flight 800 conspiracy theories exist, the most prevalent being that a missile strike from a terrorist or an accidental launch from a U.S. Navy vessel caused the crash, and is the subject of a government cover-up.[10][11] Witness accounts lend support to the most prevalent theory, involving a missile strike to the plane.[12]

Accident flight

N93119 in 1982
N93119 seen at London Heathrow Airport in 1982.
Upper deck windows of N93119
The close-up view of N93119's front fuselage, showing the 7 plugged windows on the upper deck. These plugs were blown out following the explosion of Flight 800.
All times in this article are Eastern Daylight Time (EDT).

The accident airplane, registration N93119, (Boeing 747-131) was manufactured by Boeing in July 1971; it had been ordered by Eastern Air Lines, but after Eastern canceled its 747 orders, the plane was purchased new by TWA. The aircraft had completed 16,869 flights with 93,303 hours of operation.[1]: 6  On the day of the accident, the airplane departed Athens, Greece as TWA Flight 881 and arrived at John F. Kennedy International Airport (JFK) about 4:38pm. The aircraft was refueled, and there was a crew change; the new flight crew consisted of 58-year-old Captain Ralph G. Kevorkian, 57-year-old Captain/Check Airman Steven E. Snyder, and 63-year-old Flight Engineer/Check Airman Richard G. Campbell (all with more than 30 years of employment at TWA), as well as 24-year-old flight engineer trainee Oliver Krick, who was starting the sixth leg of his initial operating experience training.[1]: 4–5 [13]

The ground-maintenance crew locked out the thrust reverser for engine #3 (treated as a minimum equipment list item) because of technical problems with the thrust reverser sensors during the landing of TWA 881 at JFK, prior to Flight 800's departure. In addition, severed cables for the engine #3 thrust reverser were replaced.[14] During refueling of the aircraft, the volumetric shutoff (VSO) control was believed to have been triggered before the tanks were full. To continue the pressure fueling, a TWA mechanic overrode the automatic VSO by pulling the volumetric fuse and an overflow circuit breaker. Maintenance records indicate that the airplane had numerous VSO-related maintenance writeups in the weeks before the accident.[1][page needed]

TWA 800 was scheduled to depart JFK for Paris around 7:00pm, but the flight was delayed until 8:02pm by a disabled piece of ground equipment and a passenger/baggage mismatch.[1]: 1  After the owner of the baggage in question was confirmed to be on board, the flight crew prepared for departure and the aircraft pushed back from Gate 27 at the TWA Flight Center.

Flight path of TWA 800. The colored rectangles are areas from which wreckage was recovered.[1]: fig. 21, p.64 

TWA 800 then received a series of heading changes and generally increasing altitude assignments as it climbed to its intended cruising altitude.[1]: 2  Weather in the area was light winds with scattered clouds,[1]: 256  and there were dusk lighting conditions.[1]: 4  The last radio transmission from the airplane occurred at 8:30pm when the flight crew received and then acknowledged instructions from Boston Center to climb to 15,000 feet (4,600 m).[15]: 4  The last recorded radar transponder return from the airplane was recorded by the Federal Aviation Administration (FAA) radar site at Trevose, Pennsylvania at 8:31:12pm.[1]: 3 

Thirty-eight seconds later, the captain of an Eastwind Airlines Boeing 737 reported to Boston ARTCC that he "just saw an explosion out here", adding, "we just saw an explosion up ahead of us here...about 16,000 feet (4,900 m) or something like that, it just went down into the water." Subsequently, many air traffic control facilities in the New York/Long Island area received reports of an explosion from other pilots operating in the area. Many witnesses in the vicinity of the crash stated that they saw or heard explosions, accompanied by a large fireball or fireballs over the ocean, and observed debris, some of which was burning while falling into the water.[1]: 3 

Various civilian, military, and police vessels reached the crash site and searched for survivors within minutes of the initial water impact, but found none,[1]: 86  making TWA 800 the second-deadliest aircraft accident in United States history at that time.[16]

Initial investigation

The NTSB was notified about 8:50pm the day of the accident; a full go-team was assembled in Washington, D.C. and arrived on scene early the next morning.[1]: 313  Meanwhile, initial witness descriptions led many to believe the cause of the crash was a bomb or surface-to-air missile attack.[17][18][19] The NTSB does not investigate criminal activity. The Attorney General is empowered to declare an investigation to be linked to a criminal act, and require the NTSB to relinquish control of the investigation to the FBI.[20] In the case of TWA 800, the FBI initiated a parallel criminal investigation alongside the NTSB's accident investigation.[21]

Search and recovery operations

Search and recovery operations were conducted by federal, state, and local agencies, as well as government contractors.[1]: 363–365  An HH-60 helicopter of the New York Air National Guard saw the explosion from approximately eight miles away, and arrived on scene so quickly that debris was still raining down, and the aircraft had to pull away. They reported their sighting to the tower at Suffolk County Airport (now Gabreski ANG Base). Remote-operated vehicles (ROVs), side-scan sonar, and laser line-scanning equipment were used to search for and investigate underwater debris fields. Victims and wreckage were recovered by scuba divers and ROVs; later scallop trawlers were used to recover wreckage embedded in the ocean floor.[1]: 63  In one of the largest diver-assisted salvage operations ever conducted, often working in very difficult and dangerous conditions, over 95% of the airplane wreckage was eventually recovered.[21][22]: 1  The search and recovery effort identified three main areas of wreckage underwater.[1]: 65  The yellow zone, red zone, and green zone contained wreckage from front, center, and rear sections of the airplane, respectively.[1]: 65–74  The green zone with the aft portion of the aircraft was located the furthest along the flight path.[1]: 71–74 

Pieces of wreckage were transported by boat to shore and then by truck to leased hangar space at the former Grumman Aircraft facility in Calverton, New York, for storage, examination, and reconstruction.[1]: 63  This facility became the command center and headquarters for the investigation.[1]: 363–365  NTSB and FBI personnel were present to observe all transfers to preserve the evidentiary value of the wreckage.[1]: 367  The cockpit voice recorder and flight data recorder were recovered by U.S. Navy divers 1 week after the accident; they were immediately shipped to the NTSB laboratory in Washington, D.C., for readout.[1]: 58  The victims' remains were transported to the Suffolk County Medical Examiner's Office in Hauppauge, New York.[23]: 2 

Tensions in the investigation

Relatives of TWA 800 passengers and crew, as well as the media, gathered at the Ramada Plaza JFK Hotel.[24] Many waited until the remains of their family members had been recovered, identified, and released.[25]: 1 [26]: 3–4  This hotel became known as the "Heartbreak Hotel" for its role in handling families of victims of several airliner crashes.[27][28] Ying Chan, Jose Lambiet, and Jere Hester of the New York Daily News wrote that for the families the hotel became "a makeshift grief counseling center".[29]

Grief turned to anger at TWA's delay in confirming the passenger list,[24] conflicting information from agencies and officials,[30] and mistrust of the recovery operation's priorities.[31]: 2  Although NTSB vice chairman Robert Francis stated that all bodies were being retrieved as soon as they were spotted, and that wreckage was being recovered only if divers believed that victims were hidden underneath,[31]: 2  many families were suspicious that investigators were not being truthful, or withholding information.[31]: 2 [32]: 7 [33]: 1–2 

Much anger and political pressure was also directed at Suffolk County Medical Examiner Dr. Charles V. Wetli as recovered bodies backlogged at the morgue.[22]: 3 [32]: 5 [33]: 1–2  Under constant and considerable pressure to identify victims with minimal delay,[23]: 3  pathologists worked non-stop.[32]: 5  Since the primary objective was to identify all remains rather than performing a detailed forensic autopsy, the thoroughness of the examinations was highly variable.[23]: 3  Ultimately, remains of all 230 victims were recovered and identified, the last over 10 months after the crash.[23]: 2 

With lines of authority unclear, differences in agendas and culture between the FBI and NTSB resulted in discord.[32]: 1  The FBI, from the start assuming that a criminal act had occurred,[32]: 3  saw the NTSB as indecisive. Expressing frustration at the NTSB's unwillingness to speculate on a cause, one FBI agent described the NTSB as "No opinions. No nothing".[32]: 4  Meanwhile, the NTSB was required to refute or play down speculation about conclusions and evidence, frequently supplied to reporters by law enforcement officials and politicians.[22]: 3 [32]: 4  The International Association of Machinists and Aerospace Workers (IAMAW), an invited party to the NTSB investigation, criticized the undocumented removal by FBI agents of wreckage from the hangar where it was stored.[34]

Witness interviews

An FBI witness statement summary (with personal information redacted).[35]: 41 

Although there were considerable discrepancies between different accounts, most witnesses to the accident had seen a "streak of light" that was unanimously described as ascending,[1]: 230  moving to a point where a large fireball appeared, with several witnesses reporting that the fireball split in two as it descended toward the water.[1]: 3  There was intense public interest in these witness reports and much speculation that the reported streak of light was a missile that had struck TWA 800, causing the airplane to explode.[1]: 262  These witness accounts were a major reason for the initiation and duration of the FBI's criminal investigation.[36]: 5 

Approximately 80 FBI agents conducted interviews with potential witnesses daily.[36]: 7  No verbatim records of the witness interviews were produced; instead, the agents who conducted the interviews wrote summaries that they then submitted.[36]: 5  Witnesses were not asked to review or correct the summaries.[36]: 5  Included in some of the witness summaries were drawings or diagrams of what the witness observed. Witnesses were not allowed to testify at the court hearings.[35]: 165 [37]: 184 

Within days of the crash the NTSB announced its intent to form its own witness group and to interview witnesses to the crash.[36]: 6  After the FBI raised concerns about non-governmental parties in the NTSB's investigation having access to this information and possible prosecutorial difficulties resulting from multiple interviews of the same witness,[36]: 6  the NTSB deferred and did not interview witnesses to the crash. A Safety Board investigator later reviewed FBI interview notes and briefed other Board investigators on their contents. In November 1996, the FBI agreed to allow the NTSB access to summaries of witness accounts in which personally identifying information had been redacted and to conduct a limited number of witness interviews. In April 1998, the FBI provided the NTSB with the identities of the witnesses but due to the time elapsed a decision was made to rely on the original FBI documents rather than reinterview witnesses.[1]: 229 

Further investigation and analysis

Examination of the cockpit voice recorder (CVR) and flight data recorder data showed a normal takeoff and climb,[15]: 4  with the aircraft in normal flight[38]: 2  before both abruptly stopped at 8:31:12 pm.[1]: 3  At 8:29:15 pm the captain was heard to say, "Look at that crazy fuel flow indicator there on number four…...see that?”"[1]: 2  A noise recorded on the last few tenths of a second of the CVR was similar to the last noises recorded from other airplanes that had experienced in-flight breakups.[1]: 256  This, together with the distribution of wreckage and witness reports, all indicated a sudden catastrophic in-flight breakup of TWA 800.[1]: 256 

Possible causes of the in-flight breakup

Investigators considered several possible causes for the structural breakup: structural failure and decompression, detonation of a high-energy explosive device, such as a missile warhead exploding either upon impact with the airplane, or just before impact, a bomb exploding inside the airplane, or a fuel-air explosion in the center wing fuel tank.[1]: 256–257 

Structural failure and decompression

Close examination of the wreckage revealed no evidence of structural faults such as fatigue, corrosion or mechanical damage that could have caused the in-flight breakup.[1]: 257  It was also suggested that the breakup could have been initiated by an in-flight separation of the forward cargo door like the disasters on board Turkish Airlines Flight 981 or United Airlines Flight 811, but all evidence indicated that the door was closed and locked at impact.[1]: 257  The NTSB concluded that "the in-flight breakup of TWA flight 800 was not initiated by a preexisting condition resulting in a structural failure and decompression."[1]: 257 

Live missile or bomb detonation

A review of recorded data from long-range and airport surveillance radars revealed multiple contacts of airplanes or objects in TWA 800's vicinity at the time of the accident.[1]: 87–89  None of these contacts intersected TWA 800's position at any time.[1]: 89  Attention was drawn to data from the Islip, New York, ARTCC facility that showed three tracks in the vicinity of TWA 800 that did not appear in any of the other radar data.[1]: 93  None of these sequences intersected TWA 800's position at any time either.[1]: 93  All the reviewed radar data showed no radar returns consistent with a missile or other projectile traveling toward TWA 800.[1]: 89 

The NTSB addressed allegations that the Islip radar data showed groups of military surface targets converging in a suspicious manner in an area around the accident, and that a 30-knot radar track, never identified and 3 NM from the crash site, was involved in foul play, as evidenced by its failure to divert from its course and assist with the search and rescue operations.[1]: 93  Military records examined by the NTSB showed no military surface vessels within 15 NM of TWA 800 at the time of the accident.[1]: 93  In addition, the records indicated that the closest area scheduled for military use, warning area W-387A/B, was 160 NM south.[1]: 93 

The NTSB reviewed the 30-knot target track to try to determine why it did not divert from its course and proceed to the area where the TWA 800 wreckage had fallen. TWA 800 was behind the target, and with the likely forward-looking perspective of the target's occupant(s), the occupants would not have been in a position to observe the aircraft's breakup or subsequent explosions or fireball(s).[1]: 94  Additionally, it was unlikely that the occupants of the target track would have been able to hear the explosions over the sound of its engines and the noise of the hull traveling through water, even more so if the occupants were in an enclosed bridge or cabin.[1]: 94  Further, review of the Islip radar data for other similar summer days and nights in 1999 indicated that the 30-knot track was consistent with normal commercial fishing, recreational, and cargo vessel traffic.[1]: 94 

Trace amounts of explosive residue were detected on three samples of material from three separate locations of the recovered airplane wreckage (described by the FBI as a piece of canvas-like material and two pieces of a floor panel).[1]: 118  These samples were submitted to the FBI's laboratory in Washington, D.C., which determined that one sample contained traces of cyclotrimethylenetrinitramine (RDX), another nitroglycerin, and the third a combination of RDX and pentaerythritol tetranitrate (PETN);[1]: 118  these findings received much media attention at the time.[39][40] In addition, the backs of several damaged passenger seats were observed to have an unknown red/brown-shaded substance on them.[1]: 118  According to the seat manufacturer, the locations and appearance of this substance were consistent with adhesive used in the construction of the seats, and additional laboratory testing by NASA identified the substance as being consistent with adhesives.[1]: 118 

Further examination of the airplane structure, seats, and other interior components found no damage typically associated with a high-energy explosion of a bomb or missile warhead ("severe pitting, cratering, petalling, or hot gas washing").[1]: 258  This included the pieces on which trace amounts of explosives were found.[1]: 258  Of the 5 percent of the fuselage that was not recovered, none of the missing areas were large enough to have covered all the damage that would have been caused by the detonation of a bomb or missile.[1]: 258  None of the victims' remains showed any evidence of injuries that could have been caused by high-energy explosives.[1]: 258 

The NTSB considered the possibility that the explosive residue was due to contamination from the aircraft's use in 1991 transporting troops during the Gulf War or its use in a dog-training explosive detection exercise about one month before the accident.[1]: 258–259  Testing conducted by the FAA's Technical Center indicated that residues of the type of explosives found on the wreckage would dissipate completely after two days of immersion in sea water (almost all recovered wreckage was immersed longer than two days).[1]: 259  The NTSB concluded that it was "quite possible" that the explosive residue detected was transferred from military ships or ground vehicles, or the clothing and boots of military personnel, onto the wreckage during or after the recovery operation and was not present when the aircraft crashed into the water.[1]: 259 

Although it was unable to determine the exact source of the trace amounts of explosive residue found on the wreckage, the lack of any other corroborating evidence associated with a high-energy explosion led the NTSB to conclude that "the in-flight breakup of TWA flight 800 was not initiated by a bomb or missile strike."[1]: 259 

Fuel-air explosion in the center wing fuel tank

The wing center section of a Boeing 747-100, including the CWT.[1]: fig. 4a, p. 13 

In order to evaluate the sequence of structural breakup of the airplane, the NTSB formed the Sequencing Group,[1]: 100  which examined individual pieces of the recovered structure, two-dimensional reconstructions or layouts of sections of the airplane, and various-sized three-dimensional reconstructions of portions of the airplane.[1]: 100  In addition, the locations of pieces of wreckage at the time of recovery and differences in fire effects on pieces that are normally adjacent to each other were evaluated.[1]: 100  The Sequencing Group concluded that the first event in the breakup sequence was a fracture in the wing center section of the aircraft, caused by an "overpressure event" in the center wing fuel tank (CWT).[41]: 29  An overpressure event was defined as a rapid increase in pressure resulting in failure of the structure of the CWT.[1]: 85 

Because there was no evidence that an explosive device detonated in this (or any other) area of the airplane, this overpressure event could only have been caused by a fuel/air explosion in the CWT.[1]: 261  There were 50 US gallons (190 L)* of fuel in the CWT of TWA 800;[42] tests recreating the conditions of the flight showed the combination of liquid fuel and fuel/air vapor to be flammable.[1]: 261  A major reason for the flammability of the fuel/air vapor in the CWT of the 747 was the large amount of heat generated and transferred to the CWT by air conditioning packs located directly below the tank;[1]: 298  with the CWT temperature raised to a sufficient level, a single ignition source could cause an explosion.[1]: 298 

Computer modeling[1]: 122–123  and scale-model testing[1]: 123  were used to predict and demonstrate how an explosion would progress in a 747 CWT. During this time, quenching was identified as an issue, where the explosion would extinguish itself as it passed through the complex structure of the CWT.[1]: 123  Because the research data regarding quenching was limited, a complete understanding of quenching behavior was not possible, and the issue of quenching remained unresolved.[1]: 137 

In order to better determine whether a fuel/air vapor explosion in the CWT would generate sufficient pressure to break apart the fuel tank and lead to the destruction of the airplane, tests were conducted in July and August 1997, using a retired Air France 747 at Bruntingthorpe Airfield, England. These tests simulated a fuel/air explosion in the CWT by igniting a propane/air mixture; this resulted in the failure of the tank structure due to overpressure.[1]: 261  While the NTSB acknowledged that the test conditions at Bruntingthorpe were not fully comparable to the conditions that existed on TWA 800 at the time of the accident,[1]: 261  previous fuel explosions in the CWTs of commercial airliners such as Avianca Flight 203 and Philippine Airlines Flight 143 confirmed that a CWT explosion could break apart the fuel tank and lead to the destruction of an airplane.[1]: 261 

Ultimately, based on "the accident airplane's breakup sequence; wreckage damage characteristics; scientific tests and research on fuels, fuel tank explosions, and the conditions in the CWT at the time of the accident; and analysis of witness information,"[1]: 271  the NTSB concluded that "the TWA flight 800 in-flight breakup was initiated by a fuel/air explosion in the CWT."[1]: 63 

In-flight breakup sequence and crippled flight

An NTSB investigator uses the recovered TWA 800 wreckage to illustrate the breakup sequence.

Recovery locations of the wreckage from the ocean (the red, yellow, and green zones) clearly indicated that: (1) the red area pieces (from the forward portion of the wing center section and a ring of fuselage directly in front) were the earliest pieces to separate from the airplane; (2) the forward fuselage section departed simultaneously with or shortly after the red area pieces, landing relatively intact in the yellow zone; (3) the green area pieces (wings and the aft portion of the fuselage) remained intact for a period after the separation of the forward fuselage, and impacted the water in the green zone.[43]

The CIA's animated depiction of how TWA Flight 800 broke apart. When the bottom of the aircraft blew out from the exploding fuel tank, cracks spread around the fuselage and severed the entire front section of the plane.

Fire damage and soot deposits on the recovered wreckage indicated that some areas of fire existed on the airplane as it continued on in crippled flight after the loss of the forward fuselage.[1]: 109  After about 34 seconds (based on information from witness documents), the outer portions of both the right and left wings failed.[1]: 109, 263  Shortly after, the left wing separated from what remained of the main fuselage, which resulted in further development of the fuel-fed fireballs as the pieces of wreckage fell to the ocean.[1]: 263 

Only the FAA radar facility in North Truro, Massachusetts, using specialized processing software from the United States Air Force 84th Radar Evaluation Squadron, was capable of estimating the altitude of TWA 800 after it lost power due to the CWT explosion.[1]: 87  Because of accuracy limitations, this radar data could not be used to determine whether the aircraft climbed after the nose separated.[1]: 87  Instead, the NTSB conducted a series of computer simulations to examine the flightpath of the main portion of the fuselage.[1]: 95–96  Hundreds of simulations were run using various combinations of possible times the nose of TWA 800 separated (the exact time was unknown), different models of the behavior of the crippled aircraft (the aerodynamic properties of the aircraft without its nose could only be estimated), and longitudinal radar data (the recorded radar tracks of the east/west position of TWA 800 from various sites differed).[1]: 96–97  These simulations indicated that after the loss of the forward fuselage the remainder of the aircraft continued on in crippled flight, then pitched up while rolling to the left (north),[1]: 263  climbing to a maximum altitude between 15,537 and 16,678 feet (4,736 and 5,083 m)[1]: 97  from its last recorded altitude, 13,760 feet (4,190 m).[1]: 256 

Analysis of reported witness observations

Most witness observations of a streak of light were determined by the NTSB to be consistent with the calculated flightpath of TWA 800 after the CWT explosion (screenshot from an NTSB animation).

At the start of FBI's investigation, because of the possibility that international terrorists might have been involved, assistance was requested from the Central Intelligence Agency (CIA).[44]: 2  CIA analysts, relying on sound-propagation analysis, were able to conclude that the witnesses could not be describing a missile approaching an intact aircraft, but were seeing a trail of burning fuel coming from the aircraft after the initial explosion.[44]: 5–6  This conclusion was reached after calculating how long it took for the sound of the initial explosion to reach the witnesses, and using that to correlate the witness observations with the accident sequence.[44]: 5  In all cases the witnesses could not be describing a missile approaching an intact aircraft, as the plane had already exploded before their observations began.[44]: 6 

As the investigation progressed, the NTSB decided to form a witness group to more fully address the accounts of witnesses.[36]: 7  From November 1996 through April 1997 this group reviewed summaries of witness accounts on loan from the FBI (with personal information redacted), and conducted interviews with crewmembers from a New York Air National Guard HH-60 helicopter and C-130 airplane, as well as a U.S. Navy P-3 airplane that were flying in the vicinity of TWA 800 at the time of the accident.[36]: 7–8 

In February 1998, the FBI, having closed its active investigation, agreed to fully release the witness summaries to the NTSB.[36]: 10  With access to these documents no longer controlled by the FBI, the NTSB formed a second witness group to review the documents.[36]: 10  Because of the amount of time that had elapsed (about 21 months) before the NTSB received information about the identity of the witnesses, the witness group chose not to re-interview the witnesses, but instead to rely on the original summaries of witness statements FBI written by FBI agents as the best available evidence of the observations initially reported by the witnesses.[1]: 230  Despite the two and a half years that had elapsed since the accident, the witness group did interview the captain of Eastwind Airlines Flight 507, who was the first to report the explosion of TWA 800, because of his vantage point and experience as an airline pilot.[36]: 12 

A frame from the NTSB's animation depicting how the noseless plane climbed erratically before descending into the ocean

The NTSB's review of the released witness documents determined that they contained 736 witness accounts, of which 258 were characterized as "streak of light" witnesses ("an object moving in the sky...variously described [as] a point of light, fireworks, a flare, a shooting star, or something similar.")[1]: 230  The NTSB Witness Group concluded that the streak of light reported by witnesses might have been the actual airplane during some stage of its flight before the fireball developed, noting that most of the 258 streak of light accounts were generally consistent with the calculated flightpath of the accident airplane after the CWT explosion.[1]: 262 

Thirty-eight witnesses described a streak of light that ascended vertically, or nearly so, and these accounts "seem[ed] to be inconsistent with the accident airplane's flightpath."[1]: 265  In addition, 18 witnesses reported seeing a streak of light that originated at the surface, or the horizon, which did not "appear to be consistent with the airplane's calculated flightpath and other known aspects of the accident sequence."[1]: 265  Regarding these differing accounts, the NTSB noted that based on their experience in previous investigations "witness reports are often inconsistent with the known facts or with other witnesses' reports of the same events."[1]: 237  The interviews conducted by the FBI focused on the possibility of a missile attack; suggested interview questions given to FBI agents such as "Where was the sun in relation to the aircraft and the missile launch point?" and "How long did the missile fly?" could have biased interviewees' responses in some cases.[1]: 266  The NTSB concluded that given the large number of witnesses in this case, they "did not expect all of the documented witness observations to be consistent with one another"[1]: 269  and "did not view these apparently anomalous witness reports as persuasive evidence that some witnesses might have observed a missile."[1]: 270 

After missile visibility tests were conducted in April 2000, at Eglin Air Force Base, Fort Walton Beach, Florida,[1]: 254  the NTSB determined that if witnesses had observed a missile attack they would have seen:

  1. a light from the burning missile motor ascending very rapidly and steeply for about 8 seconds;
  2. the light disappearing for up to 7 seconds;
  3. upon the missile striking the aircraft and igniting the CWT, another light, moving considerably more slowly and more laterally than the first, for about 30 seconds;
  4. this light descending while simultaneously developing into a fireball falling toward the ocean.[1]: 270  None of the witness documents described such a scenario.[1]: 270 
Another frame from the CIA's animation depicting how the left wing of TWA Flight 800 sheared off and created a second fireball

Because of their unique vantage points or the level of precision and detail provided in their accounts, five witness accounts generated special interest:[1]: 242–243  the pilot of Eastwind Airlines Flight 507, the crew members in the HH-60 helicopter, a streak-of-light witness aboard US Airways Flight 217, a land witness on the Beach Lane Bridge in Westhampton Beach, New York, and a witness on a boat near Great Gun Beach.[1]: 243–247  Advocates of a missile-attack scenario asserted that some of these witnesses observed a missile;[1]: 264  analysis demonstrated that the observations were not consistent with a missile attack on TWA 800, but instead were consistent with these witnesses having observed part of the in-flight fire and breakup sequence after the CWT explosion.[1]: 264 

The NTSB concluded that "the witness observations of a streak of light were not related to a missile and that the streak of light reported by most of these witnesses was burning fuel from the accident airplane in crippled flight during some portion of the post-explosion, preimpact breakup sequence".[1]: 270  The NTSB further concluded that "the witnesses' observations of one or more fireballs were of the airplane's burning wreckage falling toward the ocean".[1]: 270 

Possible ignition sources of the center wing fuel tank

In an attempt to determine what ignited the flammable fuel-air vapor in the CWT and caused the explosion, the NTSB evaluated numerous potential ignition sources. All but one were considered very unlikely to have been the source of ignition.[1]: 279 

Missile fragment or small explosive charge

Although the NTSB had already reached the conclusion that a missile strike did not cause the structural failure of the airplane, the possibility that a missile could have exploded close enough to TWA 800 for a missile fragment to have entered the CWT and ignited the fuel/air vapor, yet far enough away not to have left any damage characteristic of a missile strike, was considered.[1]: 272  Computer simulations using missile performance data simulated a missile detonating in a location such that a fragment from the warhead could penetrate the CWT.[1]: 273  Based on these simulations, the NTSB concluded that it was "very unlikely" that a warhead detonated in such a location where a fragment could penetrate the CWT, but no other fragments impact the surrounding airplane structure leaving distinctive impact marks.[1]: 273 

Similarly, the investigation considered the possibility that a small explosive charge placed on the CWT could have been the ignition source.[1]: 273  Testing by the NTSB and the British Defence Evaluation and Research Agency demonstrated that when metal of the same type and thickness of the CWT was penetrated by a small charge, there was petalling of the surface where the charge was placed, pitting on the adjacent surfaces, and visible hot gas washing damage in the surrounding area.[1]: 273–274  Since none of the recovered CWT wreckage exhibited these damage characteristics, and none of the areas of missing wreckage were large enough to encompass all the expected damage, the investigation concluded that this scenario was "very unlikely."[1]: 274 

Other potential sources

The NTSB also investigated whether the fuel/air mixture in the CWT could have been ignited by lightning strike, meteor strike, auto-ignition or hot surface ignition, a fire migrating to the CWT from another fuel tank via the vent system, an uncontained engine failure, a turbine burst in the air conditioning packs beneath the CWT, a malfunctioning CWT jettison/override pump, a malfunctioning CWT scavenger pump, or static electricity.[1]: 272–279  After analysis the investigation determined that these potential sources were "very unlikely" to have been the source of ignition.[1]: 279 

Fuel quantity indication system

Because a combustible fuel/air mixture will always exist in fuel tanks, Boeing designers had attempted to eliminate all possible sources of ignition in the 747's tanks. To do so, all devices are protected from vapor intrusion, and voltages and currents used by the Fuel Quantity Indication System (FQIS) are kept very low. In the case of the 747-100 series, the only wiring located inside the CWT is that which is associated with the FQIS.

In order for the FQIS to have been Flight 800's ignition source, a transfer of higher-than-normal voltage to the FQIS would have needed to occur, as well as some mechanism whereby the excess energy was released by the FQIS wiring into the CWT. While the NTSB determined that factors suggesting the likelihood of a short circuit event existed, they added that "neither the release mechanism nor the location of the ignition inside the CWT could be determined from the available evidence." Nonetheless, the NTSB concluded that "the ignition energy for the CWT explosion most likely entered the CWT through the FQIS wiring".

Though the FQIS itself was designed to prevent danger by minimizing voltages and currents, the innermost tube of Flight 800's FQIS compensator showed damage similar to that of the compensator tube identified as the ignition source for the surge tank fire that destroyed a 747 near Madrid in 1976.[1]: 293–294  This was not considered proof of a source of ignition. Evidence of arcing was found in a wire bundle that included FQIS wiring connecting to the center wing tank.[1]: 288  Arcing signs were also seen on two wires sharing a cable raceway with FQIS wiring at station 955.[1]: 288 

The captain's cockpit voice recorder channel showed two "dropouts" of background power harmonics in the second before the recording ended (with the separation of the nose).[1]: 289  This might well be the signature of an arc on cockpit wiring adjacent to the FQIS wiring. The captain commented on the "crazy" readings of the number 4 engine fuel flow gauge about 2 1/2 minutes before the CVR recording ended.[1]: 290  Finally, the Center Wing Tank fuel quantity gauge was recovered and indicated 640 pounds instead of the 300 pounds that had been loaded into that tank.[1]: 290  Experiments showed that applying power to a wire leading to the fuel quantity gauge can cause the digital display to change by several hundred pounds before the circuit breaker trips. Thus the gauge anomaly could have been caused by a short to the FQIS wiring.[1]: 290  The NTSB concluded that the most likely source of sufficient voltage to cause ignition was a short from damaged wiring, or within electrical components of the FQIS. As not all components and wiring were recovered, it was not possible to pinpoint the source of the necessary voltage.

Conclusions

The NTSB investigation ended with the adoption of its final report on August 23, 2000. In it the Board determined that the probable cause of the TWA 800 accident was:[1]: 308 

[An] explosion of the center wing fuel tank (CWT), resulting from ignition of the flammable fuel/air mixture in the tank. The source of ignition energy for the explosion could not be determined with certainty, but, of the sources evaluated by the investigation, the most likely was a short circuit outside of the CWT that allowed excessive voltage to enter it through electrical wiring associated with the fuel quantity indication system.

In addition to the probable cause, the NTSB found the following contributing factors to the accident:[1]: 308 

  • The design and certification concept that fuel tank explosions could be prevented solely by precluding all ignition sources.
  • The certification of the Boeing 747 with heat sources located beneath the CWT with no means to reduce the heat transferred into the CWT or to render the fuel tank vapor non-combustible.

During the course of its investigation, and in its final report, the NTSB issued fifteen safety recommendations, mostly covering fuel tank and wiring-related issues.[1]: 309–312  Among the recommendations was that significant consideration should be given to the development of modifications such as nitrogen-inerting systems for new airplane designs and, where feasible, for existing airplanes.[45]: 6 

Controversy

The NTSB's conclusions about the cause of the TWA 800 disaster took four years and one month to be published. The FBI's earliest investigations and interviews, later used by the NTSB, were performed under the assumption of a missile attack, a fact noted in the NTSB's final report. Six months into the investigation, the NTSB's chairman, Jim Hall, was quoted as saying, "All three theories—a bomb, a missile, or mechanical failure—remain."[46] Speculation was fueled in part by early descriptions, visuals and eyewitness accounts of the disaster that indicated a sudden explosion and trails of fire moving in an upward direction.

On July 17, 2013, the 17th anniversary of the tragedy, the Epix premium TV channel aired the documentary TWA Flight 800, which alleges that the crash investigation was a cover-up. The film highlights extensive eyewitness interviews, with many interviewees directly objecting to publicly described versions of their own descriptions of events. It also highlights interviews with investigators who had been involved in the original inquest, six of whom had filed a petition to reopen the probe. Their petition was based on eyewitness accounts, radar evidence indicating a possible missile and claims of evidence tampering. They dubbed it "The TWA 800 Project". Former NTSB investigator Henry Hughes has been quoted that he believes a bomb or a missile caused the crash.[47][48][49][50][51]

To consider the petition, the NTSB assembled a team of investigators not previously involved with the original investigation. On July 2, 2014, the NTSB said it would not reconsider its finding that the crash was caused by a fuel tank explosion. In a press release they stated: "After a thorough review of all the information provided by the petitioners, the NTSB denied the petition in its entirety because the evidence and analysis presented did not show the original findings were incorrect."[51]

Aftermath

Many Internet users responded to the incident; the resulting web traffic set records for Internet activity at the time. CNN's traffic quadrupled to 3.9 million hits per day. After the tragedy, the website of The New York Times saw its traffic increase to 1.5 million hits per day, 50% higher than its previous rate. In 1996, few U.S. government websites were updated daily, but the United States Navy's crash website was constantly updated and had detailed information about the salvage of the crash site.[52]

The wreckage is permanently stored in an NTSB facility in Ashburn, Loudoun County, Virginia that was custom-built for the purpose. The reconstructed aircraft is used to train accident investigators.[53][54]

On July 18, 2008, the Secretary of Transportation visited the facility and announced a final rule designed to prevent accidents caused by fuel-tank explosions. The rule would require airlines to pump inert gas into the tanks, and will cover all new passenger and cargo airliners, and passenger planes built in most of the 1990s, but not old cargo planes.[55] The NTSB had first recommended such a rule just five months after the incident and 33 years after a similar recommendation issued by the Civil Aeronautics Board Bureau of Safety on December 17, 1963, nine days after the crash of Pan Am Flight 214.[56]

The crash of TWA Flight 800, and that of ValuJet Flight 592 earlier in 1996, prompted Congress to pass the Aviation Disaster Family Assistance Act of 1996 as part of the federal aviation appropriations bill. Among other things, the Act gives NTSB, instead of the particular airline involved, responsibility for coordinating services to the families of victims of fatal aircraft accidents in the United States. In addition, it restricts lawyers and other parties from contacting family members within 30 days of the accident.[57]

During the investigation, the NTSB and the FBI clashed with each other many times. The agencies needed a detailed protocol describing which agency takes the lead when it is initially unclear whether an event is an accident or a criminal act. 49 Code of Federal Regulations 831.5 specified in 1996 (as it does now) that the NTSB’s aviation accident investigations have priority over all other federal investigations. After the TWA flight 800 investigation, the NTSB recognized the need for better clarity. The NTSB sought and secured language to clarify the issue in 49 USC 1131(a)(2)(B), which was amended in 2000 to read:

If the Attorney General, in consultation with the Chairman of the [NTSB], determines and notifies the [NTSB] that circumstances reasonably indicate that the accident may have been caused by an intentional criminal act, the [NTSB] shall relinquish investigative priority to the [FBI]. The relinquishment of investigative priority by the [NTSB] shall not otherwise affect the authority of the [NTSB] to continue its investigation under this section

In 2005, the NTSB and the FBI entered into a Memorandum of Understanding (MOU) that states that, “[i]n the immediate aftermath of a transportation accident, the NTSB is the presumptive lead investigative agency and will assume control of the accident scene.” The FBI may still conduct a criminal investigation, but the NTSB investigation has priority. When investigative priority remains with the NTSB, the FBI must coordinate its investigative activities with the NTSB investigator-in-charge. This authority includes interviewing witnesses. The MOU states that: “[t]his procedure is intended…to ensure that neither NTSB nor FBI investigative activity unnecessarily complicates or compromises the other agency’s investigation. The new statutory language and the MOU have improved coordination between the NTSB and FBI since the TWA flight 800 accident. Today, FBI and NTSB personnel conduct joint exercises. They can call upon one another’s laboratories and other assets. The NTSB and the FBI have designated liaisons to ensure that information flows between agencies, and to coordinate on-scene operations.[58]

Heidi Snow, the fiancée of TWA800 victim Michel Breistroff, established the AirCraft Casualty Emotional Support Services (ACCESS) nonprofit group together with families of victims of Pan Am Flight 103.[59]

International Memorial

TWA Memorial.

The TWA Flight 800 International Memorial was dedicated in a 2-acre (8,100 m2) parcel immediately adjoining the main pavilion at Smith Point County Park in Shirley, New York, on July 14, 2004. The memorial is located at 40°44′04″N 72°51′37″W / 40.734509°N 72.860372°W / 40.734509; -72.860372. Funds for the memorial were raised by the Families of TWA Flight 800 Association. David Busch of Busch Associates in Bay Shore, New York designed the memorial. The memorial includes landscaped grounds, flags from the 13 countries of the victims, and a curved black granite memorial with the names engraved on one side and an illustration on the other of a wave releasing 230 seagulls. In July 2006, an abstract design of a 10-foot-high (3.0 m) lighthouse in black granite designed by Harry Edward Seaman, who had lost his cousin in the crash, was added. The lighthouse sits above a tomb holding many of the victims' personal belongings.[60]

Passengers and crew

"Love's Embrace", a statue of Pam Lychner and her daughters, Shannon and Katie, in Spring Valley Village, Texas. All 3 were killed on board TWA Flight 800.

There were 230 people on board TWA 800 including 18 crew and 20 off-duty employees,[61] most of whom were crew meant to cover the Paris-Rome leg of the flight.

Of the 230 people on board there were individuals from the United States, Mexico, France, Denmark, Belgium, Algeria, Israel, Portugal, Germany, Norway, Sweden and the United Kingdom.

Passengers who died included:[62]

See also

  • Pan Am Flight 214, an aircraft that suffered a fuel tank explosion after being hit by lightning
  • Louis Freeh, Director of the FBI
  • Final Destination, 2000 American horror movie loosely based on the crash of TWA Flight 800
  • Night Fall (novel), 2004 New York Times Best Seller that revolves around a couple who witnessed and videotaped the crash of TWA Flight 800

References

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dy dz ea National Transportation Safety Board (2000). "Aircraft Accident Report: In-flight Breakup Over the Atlantic Ocean Trans World Airlines Flight 800" (PDF). NTSB/AAR-00/03. Retrieved January 5, 2016.
  2. ^ CNN (July 19, 1996). "What happened to Flight 800?". Retrieved April 5, 2011. {{cite news}}: |last= has generic name (help)
  3. ^ Knowlton, Brian (July 24, 1996). "Investigators Focus Closely on Terrorism As Cause of Explosion: Chemicals Found on Jet Victims, U.S. Reports". The New York Times. Retrieved April 5, 2011.
  4. ^ Fedarko; et al. (July 29, 1996). "Terror on Flight 800: Who wishes us ill?". Time. Retrieved April 5, 2011.
  5. ^ "Aviation and criminal experts probe TWA crash". CNN. July 19, 1996. Retrieved April 5, 2011.
  6. ^ "FBI: No criminal evidence behind TWA 800 crash". CNN. November 18, 1997. Retrieved April 5, 2011.
  7. ^ "NTSB Board Meeting on TWA 800 August 23, 2000, Part 4". National Transportation Safety Board. Retrieved April 5, 2011.
  8. ^ Tauss, Randolph M. (August 14, 2008). "The Crash of TWA Flight 800". Central Intelligence Agency. Retrieved April 6, 2011.
  9. ^ Lowery, Joan (July 16, 2008). "Jet fuel-tank protection ordered". Seattle Post-Intelligencer. The Associated Press. Retrieved April 5, 2011.
  10. ^ Revkin, Andrew C. (September 17, 1996). "Conspiracy Theories Rife On Demise of Flight 800". The New York Times. Retrieved April 5, 2011.
  11. ^ Reid, Jeffery (July 17, 2006). "'Pierre Salinger Syndrome' and the TWA 800 conspiracies". CNN. Retrieved April 5, 2011.
  12. ^ Ashbrook, Tom (June 24, 2013). "TWA Flight 800: Searching For Truth". WBUR-FM (On Point). Retrieved July 16, 2016.
  13. ^ "Passenger and crew list, TWA Flight 800" (Press release). Trans World Airlines. Trans World Airlines. July 19, 1996. Retrieved January 9, 2010.
  14. ^ National Transportation Safety Board (September 30, 1997). "Airplane Performance Study - Attachment I: Boeing's TWA Flight 800 FDR Data Summary" (PDF). Retrieved November 14, 2010. {{cite journal}}: Cite journal requires |journal= (help)
  15. ^ a b National Transportation Safety Board (February 9, 2000). "Group Chairman's Factual Report of Investigation – Cockpit Voice Recorder" (PDF). Docket No. SA-516, Exhibit No. 12-A: 4. Archived from the original (PDF) on June 14, 2007. Retrieved November 7, 2012.
  16. ^ Aviation Safety Network. "ASN Aircraft accident Boeing 747-131 N93119 East Moriches, NY". Aviation Safety Network (Web). Retrieved January 15, 2010.
  17. ^ CNN (July 17, 1996). "TWA 747 explodes off Long Island". Retrieved January 11, 2010. {{cite news}}: |last= has generic name (help)
  18. ^ Malkin, Lawrence; Brian Knowlton (July 19, 1996). "No Survivors Among 228 In N.Y. Jetliner Explosion". The New York Times. Retrieved January 11, 2010.
  19. ^ Thomas, Evan (July 29, 1996). "Death On Flight 800". Newsweek Magazine. Retrieved January 11, 2010.
  20. ^ 49 U.S.C. § 1131
  21. ^ a b National Transportation Safety Board. "NTSB Board Meeting on TWA 800 August 22, 2000, Morning Session". Retrieved February 11, 2010.
  22. ^ a b c Thomas, Evan (August 5, 1996). "Riddle Of The Depths". Newsweek Magazine. Retrieved March 4, 2010.
  23. ^ a b c d National Transportation Safety Board. "Medical/Forensic Group Factual Report" (PDF). Docket No. SA-516, Exhibit 19A. Retrieved January 11, 2010.
  24. ^ a b Leland, John (August 5, 1996). "Grieving At Ground Zero". Newsweek Magazine. Retrieved January 14, 2010.
  25. ^ Swarns, Rachel L. (August 7, 1996). "For Crash Victims' Families, A Painful Return to Routine". The New York Times. Retrieved February 26, 2010.
  26. ^ Gray, Lisa (October 23, 1997). "After the Crash". Houston Press. Retrieved November 4, 2012. "The Ramada Inn at JFK was "Crash Central," the gathering place for the 230 victims' families as well as investigators, the TWA "go team," and the media."
  27. ^ Adamson, April. "229 Victims Knew Jet Was In Trouble Airport Inn Becomes Heartbreak Hotel Again". Philadelphia Inquirer. September 4, 1998. Retrieved on March 9, 2014.
  28. ^ "Hotel Near JFK Airport is Familiar With Airline Tragedy". (Archive) CNN. November 17, 2011. Retrieved on March 9, 2014.
  29. ^ Chan, Ying, Jose Lambiet, and Jere Hester. "A HEARTBREAK HOTEL FOR KIN THEY WAIT, WEEP AT JFK RAMADA". Daily News (New York). Saturday July 20, 1996. Retrieved on March 9, 2014.
  30. ^ Van Natter Jr., Don (July 25, 1996). "Navy Retrieves 2 'Black Boxes' From Sea Floor". The New York Times. p. 1. Retrieved March 3, 2010.
  31. ^ a b c Purdy, Matthew (July 30, 1996). "Airliner Bombings Are Reviewed For Similarities to T.W.A. Crash". The New York Times. Retrieved March 3, 2010.
  32. ^ a b c d e f g Sexton, Joe (August 23, 1996). "Behind a Calm Facade, Chaos, Distrust, Valor". The New York Times. Retrieved March 3, 2010.
  33. ^ a b Van Natter Jr., Don (July 25, 1996). "Navy Retrieves 2 'Black Boxes' From Sea Floor". The New York Times. Retrieved March 4, 2010.
  34. ^ International Association of Machinists and Aerospace Workers: ANALYSIS AND RECOMMENDATIONS REGARDING T.W.A. FLIGHT 800
  35. ^ a b National Transportation Safety Board. "Documents Pertaining to Witnesses 300-399" (PDF). Docket No. SA-516, Appendix E. Retrieved March 4, 2010.
  36. ^ a b c d e f g h i j k National Transportation Safety Board. "Witness Group Chairman's Factual Report" (PDF). Docket No. ?, Exhibit 4-A. Retrieved January 12, 2010.
  37. ^ National Transportation Safety Board. "Documents Pertaining to Witnesses 1-99" (PDF). Docket No. SA-516, Appendix B. Retrieved March 4, 2010.
  38. ^ National Transportation Safety Board. "Flight Data Recorder Group Chairman's Factual Report" (PDF). Docket No. 5A-516, Exhibit No. 10A. Retrieved January 15, 2010.
  39. ^ Don Van Natta Jr. (August 31, 1996). "More Traces Of Explosive In Flight 800". The New York Times. Retrieved January 12, 2010.
  40. ^ "Source: Traces of 2nd explosive found in TWA debris". CNN. August 30, 1996. Retrieved January 13, 2010.
  41. ^ National Transportation Safety Board. "Metallurgy/Structures Group Chairman Factual Report Sequencing Study" (PDF). Docket No. 5A-516, Exhibit No. 18A. Retrieved January 31, 2010.
  42. ^ National Aeronautics and Space Administration. "Fire in the sky" (PDF). System Failure Case Studies. Retrieved June 30, 2013.
  43. ^ National Transportation Safety Board. "Metallurgy/Structures Group Chairman Factual Report Sequencing Study" (PDF). Docket No. 5A-516, Exhibit No. 18TWA800A: 3–4. Retrieved January 31, 2010.
  44. ^ a b c d Randolph M. Tauss. "The Crash of TWA Flight 800 - Solving the Mystery of the "Missile Sightings"" (PDF). Retrieved April 6, 2011. {{cite journal}}: Cite journal requires |journal= (help)
  45. ^ National Transportation Safety Board. "National Transportation Safety Board Safety Recommendation" (PDF). A-96-174-177. Retrieved January 16, 2010.
  46. ^ CNN (January 17, 1997). "Six months later, still no answer to the TWA Flight 800 mystery". CNN. Retrieved June 18, 2008. {{cite news}}: |author= has generic name (help)
  47. ^ "U.S. investigators will not reopen TWA Flight 800 crash probe". July 3, 2014. Retrieved July 2, 2014.
  48. ^ "TWA Flight 800 documentary hints at crash cover-up". ABC News. June 19, 2013. Retrieved December 27, 2013.
  49. ^ Devaney, Robert (July 18, 2013). "Salinger's Accusations About TWA Flight 800 Resurface in New Documentary". The Georgetowner. Retrieved July 20, 2013.
  50. ^ Davies, Alex (July 17, 2013). "New". The Georgetowner. Retrieved August 1, 2013.
  51. ^ a b "NTSB Denies Petition on 1996 Crash of TWA Flight 800". ntsb.gov.
  52. ^ Barboza, David. "Many Hits, Some Misses: The Post-Crash Web Rush." The New York Times. August 6, 1996. Retrieved on June 5, 2009.
  53. ^ "Aircraft Boneyards". Boneyard. History Channel. Archived from the original on October 24, 2007. Retrieved August 9, 2007.
  54. ^ "NTSB Training Center". ntsb.gov.
  55. ^ Wald, Matthew L. (July 16, 2008). "Rule Readied to Prevent Airliner Explosions". The New York Times. Retrieved November 7, 2015.
  56. ^ "Pan Am Flight 214 CAB report (PDF) (Historical Aircraft Accident, 1963, Pan Am)" (PDF). Archived from the original (PDF) on May 26, 2013. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  57. ^ Administrator. "New York City Bar - Report - Report and Recommendations Regarding TWA Flight 800 Crash". nycbar.org.
  58. ^ "Improvements Resulting From NTSB's Recommendations". usa.gov.
  59. ^ Angley, Natalie. "Coping with sudden loss after airplane crashes" (Archive). CNN. February 10, 2015. Retrieved on February 12, 2015.
  60. ^ Thomas K (July 18, 2006). "Remembering Flight 800". Newsday. Archived from the original on May 19, 2008. Retrieved June 18, 2008.
  61. ^ "The Flight 800 Investigation". twa800.com.
  62. ^ The Associated Press (August 27, 1996). "Passenger List: TWA Flight 800". The Washington Post. Retrieved June 18, 2008.
  63. ^ Sandomir, Richard (November 13, 1998). "Courtside Memorial For Producer's Family". TV Sports. The New York Times. Retrieved July 30, 2012.
  64. ^ Burnstein B (July 17, 2006). "Town still mourns 10 years after TWA 800". CNN. Retrieved June 18, 2008.
External image
image icon Photos of N93119 at Airliners.net

40°39′N 72°38′W / 40.650°N 72.633°W / 40.650; -72.633