Jump to content

Buckley–Leverett equation

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by SavJ (talk | contribs) at 06:00, 3 March 2017 (Mods to general solution section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media[1]. The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir. This equation can be derived from the mass conservation equations of two-phase flow, under the assumptions listed below.

Equation

In a quasi-1D domain, the Buckley–Leverett equation is given by:

where is the wetting-phase (water) saturation, is the total flow rate, is the rock porosity, is the area of the cross-section in the sample volume, and is the fractional flow function of the wetting phase. Typically, is an 'S'-shaped, nonlinear function of the saturation , which characterizes the relative mobilities of the two phases:

where and denote the wetting and non-wetting phase mobilities. and denote the relative permeability functions of each phase and and represent the phase viscosities.

Assumptions

The Buckley–Leverett equation is derived based on the following assumptions:

  • Flow is linear and horizontal
  • Both wetting and non-wetting phases are incompressible
  • Immiscible phases
  • Negligible capillary pressure effects (this implies that the pressures of the two phases are equal)
  • Negligible gravitational forces

General solution

The characteristic velocity of the Buckley–Leverett equation is given by:

The hyperbolic nature of the equation implies that the solution of the Buckley–Leverett equation has the form , where is the characteristic velocity given above.

See also

References

  1. ^ S.E. Buckley and M.C. Leverett (1942). "Mechanism of fluid displacements in sands". Transactions of the AIME (146): 107–116.