Mismatch negativity
- "Mismatch field" and "MMNM" redirect here.
The mismatch negativity (MMN) or mismatch field (MMF) is a component of the event-related potential (ERP) to an odd stimulus in a sequence of stimuli. It arises from electrical activity in the brain and is studied within the field of cognitive neuroscience and psychology. It can occur in any sensory system, but has most frequently been studied for hearing and for vision. In the case of auditory stimuli, the MMN occurs after an infrequent change in a repetitive sequence of sounds (sometimes the entire sequence is called an oddball sequence.) For example, a rare deviant (d) sound can be interspersed among a series of frequent standard (s) sounds (e.g., s s s s s s s s s d s s s s s s d s s s d s s s s...). The deviant sound can differ from the standards in one or more perceptual features such as pitch, duration, or loudness. The MMN is usually evoked by either a change in frequency, intensity, duration and real or apparent spatial locus of origin.[1] The MMN can be elicited regardless of whether the subject is paying attention to the sequence.[2] During auditory sequences, a person can be reading or watching a silent subtitled movie, yet still show a clear MMN. In the case of visual stimuli, the MMN occurs after an infrequent change in a repetitive sequence of images.
MMN refers to the mismatch response in electroencephalography (EEG); MMF or MMNM refer to the mismatch response in magnetoencephalography (MEG).
History
The auditory MMN was discovered in 1978 by Risto Näätänen, A. W. K. Gaillard, and S. Mäntysalo at the Institute for Perception, TNO in The Netherlands.[3]
The first report of a visual MMN was in 1990 by Rainer Cammer.[4] For a history of the development of the visual MMN, see Pazo-Alvarez et al. (2003).[5]
For basic stimulus features
MMN is evoked by an infrequently presented stimulus ("deviant"), differing from the frequently-occurring stimuli ("standards") in one or several physical parameters like duration, intensity, or frequency (Näätänen, 1992).[6] In addition, it is generated by a change in spectrally complex stimuli like phonemes, in synthesised instrumental tones, or in the spectral component of tone timbre. Also the temporal order reversals elicit an MMN when successive sound elements differ either in frequency, intensity, or duration. The MMN is not elicited by stimuli with deviant stimulus parameters when they are presented without the intervening standards. Thus, the MMN has been suggested to reflect change detection when a memory trace representing the constant standard stimulus and the neural code of the stimulus with deviant parameter(s) are discrepant.
Vs. auditory sensory memory
The MMN data can be understood as providing evidence that stimulus features are separately analysed and stored in the vicinity of auditory cortex (for a discussion, please see the theory section below). The close resemblance of the behaviour of the MMN to that of the previously behaviourally observed "echoic" memory system strongly suggests that the MMN provides a non-invasive, objective, task-independently measurable physiological correlate of stimulus-feature representations in auditory sensory memory.
Relationship to attentional processes
The experimental evidence suggests that the auditory sensory memory index MMN provides sensory data for attentional processes, and, in essence, governs certain aspects of attentive information processing. This is evident in the finding that the latency of the MMN determines the timing of behavioural responses to changes in the auditory environment.[7] Furthermore, even individual differences in discrimination ability can be probed with the MMN. The MMN is also a likely component of the chain of brain events causing attention switches to changes in the environment. In the light of these observations, it seems that at present the MMN provides the best available physiological measure of automatic central auditory processing.
See also
- Bereitschaftspotential
- C1 and P1
- Contingent negative variation
- Difference due to memory
- Early left anterior negativity
- Error-related negativity
- Late positive component
- Lateralized readiness potential
- N2pc
- N100
- N170
- N200
- N400
- Oddball paradigm
- P3a
- P3b
- P200
- P300 (neuroscience)
- P600 (neuroscience)
- Somatosensory evoked potential
- Visual N1
References
- ^ Näätänen, R.; Paavilainen, P.; Titinen, H.; Jiang, D.; Alho, D. (1993). "Attention and Mismatch Negativity". Psychophysiology. 30 (5): 436–450. doi:10.1111/j.1469-8986.1993.tb02067.x.
- ^ Brattico, Elvira; Tervaniemi, Mari; Näätänen, Risto; Peretz, Isabelle (8 August 2006). "Musical Scale Properties are Automatically Processed in the Human Auditory Cortex" (PDF). Brain Research. 1117 (1). Elsevier B.V.: 162–174. doi:10.1016/j.brainres.2006.08.023. PMID 16963000. Retrieved 20 June 2014.
- ^ Cite error: The named reference
Näätänen, 1978
was invoked but never defined (see the help page). - ^ Cammann, R (1990). "Is there no MMN in the visual modality?". Behavioral and Brain Sciences. 13: 234–234. doi:10.1017/s0140525x00078420.
- ^ Pazo-Alvarez, P.; Cadaveira, F.; Amenedo, E. (2003). "MMN in the visual modality: A review". Biological Psychology. 63: 199–236. doi:10.1016/s0301-0511(03)00049-8.
- ^ Cite error: The named reference
Näätänen, 1992
was invoked but never defined (see the help page). - ^ Tiitinen, H.; May, P.; Reinikainen, K.; Näätänen, R. "Attentive novelty detection in humans is governed by pre-attentive sensory memory". Nature. 372 (6501): 90–92. doi:10.1038/372090a0. PMID 7969425.
External links
- Mismatch Negativity (MMN) summary at the Cognitive Brain Research Unit at the University of Helsinki