Jump to content

GW170814

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Mfb (talk | contribs) at 18:37, 27 September 2017 (approximate location (why doesn't wikidata have properties for that?)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

GW170814
The signal of GW170814 measured by Hanford, Livingston and Virgo
Right ascension3h 11m
Declination−44° 57′
Total energy outputM × c2
Other designationsGW170814
  Related media on Commons

GW170104 was a gravitational wave signal from two merging black holes, detected by the LIGO and Virgo observatories on 14 August 2017. On 27 September 2017, the LIGO and Virgo collaborations announced the observation of the signal, the fourth confirmed event after GW170104, GW150914 and GW151226. It was the first binary black hole merger detected by LIGO and Virgo together.[1]

Event detection

The signal was detected at 10:30:43 UTC. The Livingston detector was the first to receive the signal, followed by the Hanford detector 8 milliseconds later and Virgo received the signal 14 milliseconds after Livingston. The detection in all three detectors lead to a very accurate estimate of the position of the source, with a 90% credible region of just 60 deg2, a factor 20 more accurate than before.[2]

Astrophysical origin

Analysis indicated the signal resulted from the inspiral and merger of a pair of black holes (BBH) with 30.5+5.7
−3.0
and 25.3+2.8
−4.2
times the mass of the Sun, at a distance of 540+130
−210
 megaparsecs
(1.8+0.4
−0.7
billion light years) from Earth. The resulting black hole had a mass of 53.2+3.2
−2.5
solar masses, 2.7+0.4
−0.3
solar masses having been radiated away as gravitational energy. The peak luminosity of GW170104 was 3.7+0.5
−0.5
×1049 W
.

See also

References