Jump to content

Mediterranean Sea

Coordinates: 35°N 18°E / 35°N 18°E / 35; 18
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 112.210.19.136 (talk) at 00:13, 27 December 2017. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Mediterranean Sea
Map of the Mediterranean Sea
Coordinates35°N 18°E / 35°N 18°E / 35; 18
TypeSea
Primary inflowsAtlantic Ocean, Sea of Marmara, Nile, Ebro, Rhône, Chelif, Po
Basin countries
Surface area2,500,000 km2 (970,000 sq mi)
Average depth1,500 m (4,900 ft)
Max. depth5,267 m (17,280 ft)
Water volume3,750,000 km3 (900,000 cu mi)
Residence time80–100 years[1]
Islands3300+
SettlementsAlexandria, Algiers, Athens, Barcelona, Beirut, Carthage, Dubrovnik, İzmir, Rome, Split, Tangier, Tel Aviv, Tripoli, Tunis (full list)

The Mediterranean Sea is a sea connected to the Atlantic Ocean, surrounded by the Mediterranean Basin and almost completely enclosed by land: on the north by Southern Europe and Anatolia, on the south by North Africa, and on the east by the Levant. Although the sea is sometimes considered a part of the Atlantic Ocean, it is usually identified as a separate body of water. Geological evidence indicates that around 5.9 million years ago, the Mediterranean was cut off from the Atlantic and was partly or completely desiccated over a period of some 600,000 years before being refilled by the Zanclean flood about 5.3 million years ago.

The name Mediterranean is derived from the Latin mediterraneus, meaning "inland" or "in the middle of land" (from medius, "middle" and terra, "land"). It covers an approximate area of 2.5 million km2 (965,000 sq mi), but its connection to the Atlantic (the Strait of Gibraltar) is only 14 km (8.7 mi) wide. The Strait of Gibraltar is a narrow strait that connects the Atlantic Ocean to the Mediterranean Sea and separates Gibraltar and Spain in Europe from Morocco in Africa. In oceanography, it is sometimes called the Eurafrican Mediterranean Sea or the European Mediterranean Sea to distinguish it from mediterranean seas elsewhere.[2][3]

The Mediterranean Sea has an average depth of 1,500 m (4,900 ft) and the deepest recorded point is 5,267 m (17,280 ft) in the Calypso Deep in the Ionian Sea. The sea is bordered on the north by Europe, the east by Asia, and in the south by Africa. It is located between latitudes 30° and 46° N and longitudes 6° W and 36° E. Its west-east length, from the Strait of Gibraltar to the Gulf of Iskenderun, on the southwestern coast of Turkey, is approximately 4,000 km (2,500 miles). The sea's average north-south length, from Croatia’s southern shore to Libya, is approximately 800 km (500 miles). The Mediterranean Sea, including the Sea of Marmara (connected by the Dardanelles to the Aegean Sea), has a surface area of approximately 2,510,000 square km (970,000 square miles).[4]

The sea was an important route for merchants and travellers of ancient times that allowed for trade and cultural exchange between emergent peoples of the region. The history of the Mediterranean region is crucial to understanding the origins and development of many modern societies.

The countries with coastlines on the Mediterranean Sea are Albania, Algeria, Bosnia and Herzegovina, Croatia, Cyprus, Egypt, France, Greece, Iraq, Israel, Italy, Lebanon, Libya, Malta, Morocco, Monaco, Montenegro, Palestine, Slovenia, Spain, Syria, Tunisia and Turkey. In addition, the Gaza Strip and the British Overseas Territories of Gibraltar and Akrotiri and Dhekelia have coastlines on the sea.

Name

With its highly indented coastline and large number of islands, Greece has the longest Mediterranean coastline.

The term Mediterranean derives from the Latin word mediterraneus, meaning "amid the earth (note: earth in the sense "soil", not Planet Earth)" or "between land" (medi-; adj. medius, -um -a "middle, between" + terra f., "land, earth"): as it is between the continents of Africa, Asia and Europe. The Ancient Greek name Mesogeios (Μεσόγειος), is similarly from μέσο, "between" + γη, "land, earth").[5] It can be compared with the Ancient Greek name Mesopotamia (Μεσοποταμία), meaning "between rivers".

The Mediterranean Sea has historically had several names. For example, the Carthaginians called it the "Syrian Sea" and latter Romans commonly called it Mare Nostrum ("Our Sea"), and occasionally Mare Internum[6] and in Greek as the "Mare Magnum", meaning "Great Sea".[7]

In ancient Syrian texts, Phoenician epics and in the Hebrew Bible, it was primarily known as the "Great Sea" (הַיָּם הַגָּדוֹל, HaYam HaGadol, Numbers 34:6,7; Joshua 1:4, 9:1, 15:47; Ezekiel 47:10,15,20), or simply "The Sea" (1 Kings 5:9; comp. 1 Macc. 14:34, 15:11); however, it has also been called the "Hinder Sea" (הַיָּם הָאַחֲרוֹן), due to its location on the west coast of Greater Syria or the Holy Land, and therefore behind a person facing the east, sometimes translated as "Western Sea", (Deut. 11:24; Joel 2:20). Another name was the "Sea of the Philistines" (יָם פְּלִשְׁתִּים, Exod. 23:31), from the people inhabiting a large portion of its shores near the Israelites.

In Modern Hebrew, it has been called HaYam HaTikhon (הַיָּם הַתִּיכוֹן), "the Middle Sea", reflecting the Sea's name in ancient Greek (Mesogeios), Latin Mare internum (Inner Sea) or Mare Nostrum (Our Sea), and modern languages in both Europe and the Middle East (Mediterranean, etc.).[7]

Similarly, in Modern Arabic, it is known as al-Baḥr [al-Abyaḍ] al-Mutawassiṭ (البحر [الأبيض] المتوسط), "the [White] Middle Sea", while in Islamic and older Arabic literature, it was referenced as Baḥr al-Rūm (بحر الروم), or "the Roman/Byzantine Sea."[7]

In Ottoman Turkish, it has also been called Bahr-i Sefid, meaning the "Pure White Sea".

In Turkish, it is known as Akdeniz,[8] meaning "the White Sea", to distinguish it from the Black Sea.[7]

History

Ancient civilisations

Greek (red) and Phoenician (yellow) colonies in antiquity c. the 6th century BCE
The Roman Empire at its farthest extent in AD 117

Several ancient civilisations were located around the Mediterranean shores, and were greatly influenced by their proximity to the sea. It provided routes for trade, colonisation, and war, as well as food (from fishing and the gathering of other seafood) for numerous communities throughout the ages.[9]

Due to the shared climate, geology, and access to the sea, cultures centered on the Mediterranean tended to have some extent of intertwined culture and history.

Two of the most notable Mediterranean civilisations in classical antiquity were the Greek city states and the Phoenicians, both of which extensively colonised the coastlines of the Mediterranean. Later, when Augustus founded the Roman Empire, the Romans referred to the Mediterranean as Mare Nostrum ("Our Sea").

Darius I of Persia, who conquered Ancient Egypt, built a canal linking the Mediterranean to the Red Sea. Darius's canal was wide enough for two triremes to pass each other with oars extended, and required four days to traverse.[10]

Middle Ages and empires

The Battle of Lepanto, 1571, ended in victory for the European Holy League against the Ottoman Turks.

The Western Roman Empire collapsed around AD 476. Temporarily the east was again dominant as Roman power lived on in the Byzantine Empire formed in the 4th century from the eastern half of the Roman empire. Another power arose in the 7th century, and with it the religion of Islam, which soon swept across from the east; at its greatest extent, the Arab Empire controlled 75% of the Mediterranean region and left a lasting footprint on its eastern and southern shores.

Europe started to revive, however, as more organised and centralised states began to form in the later Middle Ages after the Renaissance of the 12th century.

The bombardment of Algiers by the Anglo-Dutch fleet in support of an ultimatum to release European slaves, August 1816

Ottoman power based in Anatolia continued to grow, and in 1453 extinguished the Byzantine Empire with the Conquest of Constantinople. Ottomans gained control of much of the sea in the 16th century and maintained naval bases in southern France, Algeria and Tunisia. Barbarossa, the famous Ottoman captain is a symbol of this domination with the victory of the Battle of Preveza (1538). The Battle of Djerba (1560) marked the apex of Ottoman naval domination in the Mediterranean. As the naval prowess of the European powers increased, they confronted Ottoman expansion in the region when the Battle of Lepanto (1571) checked the power of the Ottoman Navy. This was the last naval battle to be fought primarily between galleys.

The Barbary pirates of North Africa preyed on Christian shipping and coastlines in the Western Mediterranean Sea.[11] According to Robert Davis, from the 16th to 19th centuries, pirates captured 1 million to 1.25 million Europeans as slaves.[12]

The development of oceanic shipping began to affect the entire Mediterranean. Once, most trade between Western Europe and the East had passed through the region, but after the 1490s the development of a sea route to the Indian Ocean allowed the importation of Asian spices and other goods through the Atlantic ports of western Europe.[13][14][15]

21st century and migrations

Satellite image of the Mediterranean Sea at night

In 2013 the Maltese president described the Mediterranean sea as a "cemetery" due to the large amounts of migrants who drowned there after their boats capsized.[16] European Parliament president Martin Schulz said in 2014 that Europe's migration policy "turned the Mediterranean into a graveyard", referring to the number of drowned refugees in the region as a direct result of the policies.[17] An Azerbaijani official described the sea as "a burial ground ... where people die".[18]

Following the 2013 Lampedusa migrant shipwreck, the Italian government decided to strengthen the national system for the patrolling of the Mediterranean Sea by authorising "Operation Mare Nostrum", a military and humanitarian mission in order to rescue the migrants and arrest the traffickers of immigrants. In 2015, more than one million migrants crossed the Mediterranean Sea into Europe.[19]

Geography

A satellite image showing the Mediterranean Sea. The Strait of Gibraltar can be seen in the bottom left (north-west) quarter of the image; to its left is the Iberian Peninsula in Europe, and to its right, the Maghreb in Africa.
The Dardanelles strait in Turkey. The north side is Europe with the Gelibolu Peninsula in the Thrace region; the south side is Anatolia in Asia.

The Mediterranean Sea is connected to the Atlantic Ocean by the Strait of Gibraltar (known in Homer's writings as the "Pillars of Hercules") in the west and to the Sea of Marmara and the Black Sea, by the Dardanelles and the Bosporus respectively, in the east. The Sea of Marmara (Dardanelles) is often considered a part of the Mediterranean Sea, whereas the Black Sea is generally not. The 163 km (101 mi) long artificial Suez Canal in the southeast connects the Mediterranean Sea to the Red Sea.[7]

Large islands in the Mediterranean include Cyprus, Crete, Euboea, Rhodes, Lesbos, Chios, Kefalonia, Corfu, Limnos, Samos, Naxos and Andros in the Eastern Mediterranean; Sicily, Cres, Krk, Brač, Hvar, Pag, Korčula and Malta in the central Mediterranean; and Sardinia, Corsica, Ibiza, Majorca and Menorca (the Balearic Islands) in the Western Mediterranean.

The typical Mediterranean climate has hot, humid, and dry summers and mild, rainy winters. Crops of the region include olives, grapes, oranges, tangerines, and cork.

Extent

The International Hydrographic Organization defines the limits of the Mediterranean Sea as follows:[20]

Stretching from the Strait of Gibraltar in the west to the entrances to the Dardanelles and the Suez Canal in the east, the Mediterranean Sea is bounded by the coasts of Europe, Africa and Asia, and is divided into two deep basins:

  • Western Basin:
  • Eastern Basin:
    • On the west: The northeastern and eastern limits of the Western Basin.
    • On the northeast: A line joining Kum Kale (26°11'E) and Cape Helles, the western entrance to the Dardanelles.
    • On the southeast: The entrance to the Suez Canal.
    • On the east: The coasts of Syria and Israel.

Oceanography

Predominant surface currents for June

Being nearly landlocked affects conditions in the Mediterranean Sea: for instance, tides are very limited as a result of the narrow connection with the Atlantic Ocean. The Mediterranean is characterised and immediately recognised by its deep blue colour.

Evaporation greatly exceeds precipitation and river runoff in the Mediterranean, a fact that is central to the water circulation within the basin.[21] Evaporation is especially high in its eastern half, causing the water level to decrease and salinity to increase eastward.[22] The salinity at 5 m depth is 3.8%.[23]

The pressure gradient pushes relatively cool, low-salinity water from the Atlantic across the basin; it warms and becomes saltier as it travels east, then sinks in the region of the Levant and circulates westward, to spill over the Strait of Gibraltar.[24] Thus, seawater flow is eastward in the Strait's surface waters, and westward below; once in the Atlantic, this chemically distinct Mediterranean Intermediate Water can persist thousands of kilometres away from its source.[25]

The temperature of the water in the deepest part of the Mediterranean Sea is 13.2 °C (55.8 °F).[23]

Coastal countries

Map of the Mediterranean Sea

The following countries have a coastline on the Mediterranean Sea:

Several other territories also border the Mediterranean Sea (from west to east): The British overseas territory of Gibraltar, the Spanish autonomous cities of Ceuta and Melilla and nearby islands, the Sovereign Base Areas on Cyprus, and the Gaza Strip.

Barcelona, the largest metropolitan area on the Mediterranean Sea and also the headquarters of the Union for the Mediterranean
The Acropolis of Athens with the Mediterranean Sea in the background
The ancient port of Jaffa (now part of Tel Aviv-Yafo) in Israel: according to the Bible, where Jonah set sail before being swallowed by a whale[26]
Alexandria, one of the largest cities on the Mediterranean
Catania, Sicily, with Mount Etna in the background
İzmir, the third metropolis of Turkey after Istanbul and Ankara

Coastal cities

Major cities (municipalities) with populations larger than 200,000 people bordering the Mediterranean Sea are:

Country Cities
Algeria Algiers, Annaba, Oran
Egypt Alexandria, Port Said
France Marseille, Nice
Greece Athens, Piraeus, Patras, Thessaloniki
Israel Ashdod, Haifa, Netanya, Rishon LeZion, Tel Aviv
Italy Bari, Catania, Genoa, Messina, Naples, Palermo, Rome, Taranto, Trieste, Venice
Lebanon Beirut, Tripoli
Libya Benghazi, Khoms, Misrata, Tripoli, Zawiya, Zliten
Morocco Tétouan, Tangier
Palestine Gaza City, Khan Yunis
Spain Alicante, Badalona, Barcelona, Cartagena, Málaga, Palma, Valencia.
Syria Latakia
Tunisia Sfax, Sousse, Tunis
Turkey Antalya, Adana, İzmir, Mersin

Subdivisions

Africa (left, on horizon) and Europe (right), as seen from Gibraltar

According to the International Hydrographic Organization (IHO), the Mediterranean Sea is subdivided into a number of smaller waterbodies, each with their own designation (from west to east):[20]

Other seas

Positano, Tyrrhenian Sea

Although not recognised by the IHO treaties, there are some other seas whose names have been in common use from the ancient times, or in the present:

Many of these smaller seas feature in local myth and folklore and derive their names from these associations.

Other features

View of the Saint George Bay, and snow-capped Mount Sannine from the Corniche, Beirut
The Port of Marseille seen from L'Estaque
Sarandë, Albania is situated on an open sea gulf of the Ionian sea in the central Mediterranean.

In addition to the seas, a number of gulfs and straits are also recognised:

10 largest islands by area

The two biggest islands of the Mediterranean: Sicily and Sardinia (Italy)
Country Island Area in km2 Population
Italy Sicily 25,460 5,048,995
Italy Sardinia 23,821 1,672,804
Cyprus Cyprus 9,251 1,088,503
France Corsica 8,680 299,209
Greece Crete 8,336 623,666
Greece Euboea 3,655 218.000
Spain Majorca 3,640 869,067
Greece Lesbos 1,632 90,643
Greece Rhodes 1,400 117,007
Greece Chios 842 51,936

Climate

Map of climate zones in the areas surrounding the Mediterranean Sea, according to the Köppen climate classification

Sea temperature

Mean sea temperature (°C)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Marseille[27] 13 13 13 14 16 18 21 22 21 18 16 14 16.6
Gibraltar[28] 16 15 16 16 17 20 22 22 22 20 18 17 18.4
Málaga[29] 16 15 15 16 17 20 22 23 22 20 18 16 18.3
Athens[30] 16 15 15 16 18 21 24 24 24 21 19 18 19.3
Barcelona[31] 13 13 13 14 17 20 23 25 23 20 17 15 17.8
Heraklion[32] 16 15 15 16 19 22 24 25 24 22 20 18 19.7
Venice[33] 11 10 11 13 18 22 25 26 23 20 16 14 17.4
Valencia[34] 14 13 14 15 17 21 24 26 24 21 18 15 18.5
Malta[35] 16 16 15 16 18 21 24 26 25 23 21 18 19.9
Alexandria[36] 18 17 17 18 20 23 25 26 26 25 22 20 21.4
Naples[37] 15 14 14 15 18 22 25 27 25 22 19 16 19.3
Larnaca[38] 18 17 17 18 20 24 26 27 27 25 22 19 21.7
Limassol[39] 18 17 17 18 20 24 26 27 27 25 22 19 21.7
Antalya 17 17 17 18 21 24 27 28 27 25 22 19 21.8
Tel Aviv[40] 18 17 17 18 21 24 26 28 27 26 23 20 22.1

Geology

A submarine karst spring, called vrulja, near Omiš; observed through several ripplings of an otherwise calm sea surface.

The geologic history of the Mediterranean Sea is complex. Underlain by oceanic crust, the sea basin was once thought to be a tectonic remnant of the ancient Tethys Ocean; it is now known to be a structurally younger basin, called the Neotethys, which was first formed by the convergence of the African and Eurasian plates during the Late Triassic and Early Jurassic. Because it is a near-landlocked body of water in a normally dry climate, the Mediterranean is subject to intensive evaporation and the precipitation of evaporites. The Messinian salinity crisis started about six million years ago (mya) when the Mediterranean became landlocked, and then essentially dried up. There are salt deposits accumulated on the bottom of the basin of more than a million cubic kilometres—in some places more than three kilometres thick.[41][42]

Scientists estimate that the sea was last filled about 5.3 million years ago (mya) in less than two years by the Zanclean flood. Water poured in from the Atlantic Ocean through a newly breached gateway now called the Strait of Gibraltar at an estimated rate of about three orders of magnitude (one thousand times) larger than the current flow of the Amazon River.[43]

The Mediterranean Sea has an average depth of 1,500 m (4,900 ft) and the deepest recorded point is 5,267 m (17,280 ft) in the Calypso Deep in the Ionian Sea. The coastline extends for 46,000 km (29,000 mi). A shallow submarine ridge (the Strait of Sicily) between the island of Sicily and the coast of Tunisia divides the sea in two main subregions: the Western Mediterranean, with an area of about 850 thousand km2 (330 thousand mi2); and the Eastern Mediterranean, of about 1.65 million km2 (640 thousand mi2). A characteristic of the coastal Mediterranean are submarine karst springs or [vrulja] Error: {{Lang}}: text has italic markup (help)s, which discharge pressurised groundwater into the coastal seawater from below the surface; the discharge water is usually fresh, and sometimes may be thermal.[44][45]

Tectonics and paleoenvironmental analysis

Messinian salinity crisis before the Zanclean flood
Animation: Messinian salinity crisis

The Mediterranean basin and sea system was established by the ancient African-Arabian continent colliding with the Eurasian continent. As Africa-Arabia drifted northward, it closed over the ancient Tethys Ocean which had earlier separated the two supercontinents Laurasia and Gondwana. At about that time in the middle Jurassic period a much smaller sea basin, dubbed the Neotethys, was formed shortly before the Tethys Ocean closed at its western (Arabian) end. The broad line of collisions pushed up a very long system of mountains from the Pyrenees in Spain to the Zagros Mountains in Iran in an episode of mountain-building tectonics known as the Alpine orogeny. The Neotethys grew larger during the episodes of collisions (and associated foldings and subductions) that occurred during the Oligocene and Miocene epochs (34 to 5.33 mya); see animation: Africa-Arabia colliding with Eurasia. Accordingly, the Mediterranean basin consists of several stretched tectonic plates in subduction which are the foundation of the Eastern part of the Mediterranean Sea. Various zones of subduction harbour and form the deepest and most majestic oceanic ridges, east of the Ionian Sea and south of the Aegean. The Central Indian Ridge runs East of the Mediterranean Sea South-East across the in-between of Africa and the Arabian Peninsula into the Indian Ocean. Nevertheless, while man-made geopolitical turmoil and chaos have governed the coastlines of many various Mediterranean nations throughout the courses of ancient, modern, present and foreseeable history, the Plate tectonic status of nations bordering the Mediterranean Sea will find sharing the same geological concerns and fate.

Messinian salinity crisis

During Mesozoic and Cenozoic times, as the northwest corner of Africa converged on Iberia, it lifted the Betic-Rif mountain belts across southern Iberia and northwest Africa. There the development of the intramontane Betic and Rif basins led to creating two roughly-parallel marine gateways between the Atlantic Ocean and the Mediterranean Sea. Dubbed the Betic and Rifian corridors, they progressively closed during middle and late Miocene times; perhaps several times.[46] During late Miocene times the closure of the Betic Corridor triggered the so-called "Messinian salinity crisis" (MSC), when the Mediterranean almost entirely dried out. The time of beginning of the MSC was recently estimated astronomically at 5.96 mya, and it persisted for some 630,000 years until about 5.3 mya;[47] see Animation: Messinian salinity crisis, at right.

After the initial drawdown and re-flooding there followed more episodes—the total number is debated—of sea drawdowns and re-floodings for the duration of the MSC. It ended when the Atlantic Ocean last re-flooded the basin—creating the Strait of Gibraltar and causing the Zanclean flood—at the end of the Miocene (5.33 mya). Some research has suggested that a desiccation-flooding-desiccation cycle may have repeated several times, which could explain several events of large amounts of salt deposition.[48][49] Recent studies, however, show that repeated desiccation and re-flooding is unlikely from a geodynamic point of view. [50][51]

Desiccation and exchanges of flora and fauna

The present-day Atlantic gateway, i.e. the Strait of Gibraltar, originated in the early Pliocene via the Zanclean Flood. As mentioned, two other gateways preceded Gibraltar: the Betic Corridor across southern Spain and the Rifian Corridor across northern Morocco. The former gateway closed about six (6) mya, causing the Messinian salinity crisis (MSC); the latter or possibly both gateways closed during the earlier Tortonian times, causing a "Tortonian salinity crisis" (from 11.6 to 7.2 mya), which occurred well before the MSC and lasted much longer. Both "crises" resulted in broad connections of the mainlands of Africa and Europe, which thereby normalised migrations of flora and fauna—especially large mammals including primates—between the two continents. The Vallesian crisis indicates a typical extinction and replacement of mammal species in Europe during Tortonian times following climatic upheaval and overland migrations of new species;[52] see Animation: Messinian salinity crisis (and mammal migrations), at right.

The near-completely enclosed configuration of the Mediterranean basin has enabled the oceanic gateways to dominate seawater circulation and the environmental evolution of the sea and basin. Circulation patterns are also affected by several other factors—including climate, bathymetry, and water chemistry and temperature—which are interactive and can induce precipitation of evaporites. Deposits of evaporites accumulated earlier in the nearby Carpathian foredeep during the Middle Miocene, and the adjacent Red Sea Basin (during the Late Miocene), and in the whole Mediterranean basin (during the MSC and the Messinian age). Diatomites are regularly found underneath the evaporite deposits, suggesting a connection between their geneses.

Today, evaporation of surface seawater (output) is more than the supply (input) of fresh water by precipitation and coastal drainage systems, causing the salinity of the Mediterranean to be much higher than that of the Atlantic—so much so that the saltier Mediterranean waters sink below the waters incoming from the Atlantic, causing a two-layer flow across the Gibraltar strait: that is, an outflow submarine current of warm saline Mediterranean water, counterbalanced by an inflow surface current of less saline cold oceanic water from the Atlantic. Herman Sörgel's Atlantropa project proposal in the 1920s proposed a hydroelectric dam to be built across the Strait of Gibraltar, using the inflow current to provide a large amount of hydroelectric energy. The underlying energy grid was as well intended to support a political union between Europe and, at least, the Marghreb part of Africa (compare Eurafrika for the later impact and Desertec for a later project with some parallels in the planned grid).[53]

Shift to a "Mediterranean climate"

The end of the Miocene also marked a change in the climate of the Mediterranean basin. Fossil evidence from that period reveals that the larger basin had a humid subtropical climate with rainfall in the summer supporting laurel forests. The shift to a "Mediterranean climate" occurred largely within the last three million years (the late Pliocene epoch) as summer rainfall decreased. The subtropical laurel forests retreated; and even as they persisted on the islands of Macaronesia off the Atlantic coast of Iberia and North Africa, the present Mediterranean vegetation evolved, dominated by coniferous trees and sclerophyllous trees and shrubs with small, hard, waxy leaves that prevent moisture loss in the dry summers. Much of these forests and shrublands have been altered beyond recognition by thousands of years of human habitation. There are now very few relatively intact natural areas in what was once a heavily wooded region.

Paleoclimate

Because of its latitudinal position and its land-locked configuration, the Mediterranean is especially sensitive to astronomically induced climatic variations, which are well documented in its sedimentary record. Since the Mediterranean is involved in the deposition of eolian dust from the Sahara during dry periods, whereas riverine detrital input prevails during wet ones, the Mediterranean marine sapropel-bearing sequences provide high-resolution climatic information. These data have been employed in reconstructing astronomically calibrated time scales for the last 9 Ma of the Earth's history, helping to constrain the time of past geomagnetic reversals.[54] Furthermore, the exceptional accuracy of these paleoclimatic records has improved our knowledge of the Earth's orbital variations in the past.

Ecology and biota

As a result of the drying of the sea during the Messinian salinity crisis,[55] the marine biota of the Mediterranean are derived primarily from the Atlantic Ocean. The North Atlantic is considerably colder and more nutrient-rich than the Mediterranean, and the marine life of the Mediterranean has had to adapt to its differing conditions in the five million years since the basin was reflooded.

The Alboran Sea is a transition zone between the two seas, containing a mix of Mediterranean and Atlantic species. The Alboran Sea has the largest population of bottlenose dolphins in the Western Mediterranean, is home to the last population of harbour porpoises in the Mediterranean, and is the most important feeding grounds for loggerhead sea turtles in Europe. The Alboran sea also hosts important commercial fisheries, including sardines and swordfish. The Mediterranean monk seals live in the Aegean Sea in Greece. In 2003, the World Wildlife Fund raised concerns about the widespread drift net fishing endangering populations of dolphins, turtles, and other marine animals such as the ogre cancer.

Environmental history

For 4,000 years, human activity has transformed most parts of Mediterranean Europe, and the "humanisation of the landscape" overlapped with the appearance of the present Mediterranean climate.[56] The image of a simplistic, environmental determinist notion of a Mediterranean Paradise on Earth in antiquity, which was destroyed by later civilisations dates back to at least the 18th century and was for centuries fashionable in archaeological and historical circles. Based on a broad variety of methods, e.g. historical documents, analysis of trade relations, floodplain sediments, pollen, tree-ring and further archaeometric analyses and population studies, Alfred Thomas Grove and Oliver Rackham's work on "The Nature of Mediterranean Europe" challenges this common wisdom of a Mediterranean Europe as a "Lost Eden", a formerly fertile and forested region, that had been progressively degraded and desertified by human mismanagement.[56] The belief stems more from the failure of the recent landscape to measure up to the imaginary past of the classics as idealised by artists, poets and scientists of the early modern Enlightenment.[56]

The historical evolution of climate, vegetation and landscape in southern Europe from prehistoric times to the present is much more complex and underwent various changes. For example, some of the deforestation had already taken place before the Roman age. While in the Roman age large enterprises as the Latifundiums took effective care of forests and agriculture, the largest depopulation effects came with the end of the empire. Some[who?] assume that the major deforestation took place in modern times — the later usage patterns were also quite different e.g. in southern and northern Italy. Also, the climate has usually been unstable and showing various ancient and modern "Little Ice Ages",[57] and plant cover accommodated to various extremes and became resilient with regard to various patterns of human activity.[56]

Humanisation was therefore not the cause of climate change but followed it.[56] The wide ecological diversity typical of Mediterranean Europe is predominantly based on human behavior, as it is and has been closely related human usage patterns.[56] The diversity range was enhanced by the widespread exchange and interaction of the longstanding and highly diverse local agriculture, intense transport and trade relations, and the interaction with settlements, pasture and other land use. The greatest human-induced changes, however, came after World War II, respectively in line with the '1950s-syndrome'[58] as rural populations throughout the region abandoned traditional subsistence economies. Grove and Rackham suggest that the locals left the traditional agricultural patterns towards taking a role as scenery-setting agents for the then much more important (tourism) travellers. This resulted in more monotonous, large-scale formations.[56] Among further current important threats to Mediterranean landscapes are overdevelopment of coastal areas, abandonment of mountains and, as mentioned, the loss of variety via the reduction of traditional agricultural occupations.[56]

Natural hazards

Stromboli volcano in Italy

The region has a variety of geological hazards which have closely interacted with human activity and land use patterns. Among others, in the eastern Mediterranean, the Thera eruption, dated to the 17th or 16th century BC, caused a large tsunami that some experts hypothesise devastated the Minoan civilisation on the nearby island of Crete, further leading some to believe that this may have been the catastrophe that inspired the Atlantis legend.[59] Mount Vesuvius is the only active volcano on the European mainland, while others as Mount Etna and Stromboli are to be found on neighbouring islands. The region around Vesuvius including the Phlegraean Fields Caldera west of Naples are quite active[60] and constitute the most densely populated volcanic region in the world and eruptive event may occur within decades.[61]

Vesuvius itself is regarded as quite dangerous due to a tendency towards explosive (Plinian) eruptions.[62] It is best known for its eruption in AD 79 that led to the burying and destruction of the Roman cities of Pompeii and Herculaneum.

The large experience of member states and regional authorities has led to exchange on the international level with cooperation of NGOs, states, regional and municipality authorities and private persons.[63] The Greek–Turkish earthquake diplomacy is a quite positive example of natural hazards leading to improved relations of traditional rivals in the region after earthquakes in İzmir and Athens 1999. The European Union Solidarity Fund (EUSF) was set up to respond to major natural disasters and express European solidarity to disaster-stricken regions within all of Europe.[64] The largest amount of fund requests in the EU is being directed to forest fires, followed by floodings and earthquakes. Forest fires are, whether man made or natural, an often recurring and dangerous hazard in the Mediterranean region.[63] Also, tsunamis are an often underestimated hazard in the region. For example, the 1908 Messina earthquake and tsunami took more than 123,000 lives in Sicily and Calabria and is among the most deadly natural disasters in modern Europe.

Biodiversity

Unlike the vast multidirectional Ocean currents in open Oceans within their respective Oceanic zones; biodiversity in the Mediterranean Sea is that of a stable one due to the subtle but strong locked nature of currents which affects favorably, even the smallest macroscopic type of Volcanic Life Form. The stable Marine ecosystem of the Mediterranean Sea and sea temperature provides a nourishing environment for life in the deep sea to flourish while assuring a balanced Aquatic ecosystem excluded from any external deep oceanic factors.

Invasive species

The reticulate whipray is one of the species that colonised the Eastern Mediterranean through the Suez Canal as part of the ongoing Lessepsian migration.

The opening of the Suez Canal in 1869 created the first salt-water passage between the Mediterranean and Red Sea. The Red Sea is higher than the Eastern Mediterranean, so the canal serves as a tidal strait that pours Red Sea water into the Mediterranean. The Bitter Lakes, which are hyper-saline natural lakes that form part of the canal, blocked the migration of Red Sea species into the Mediterranean for many decades, but as the salinity of the lakes gradually equalised with that of the Red Sea, the barrier to migration was removed, and plants and animals from the Red Sea have begun to colonise the Eastern Mediterranean. The Red Sea is generally saltier and more nutrient-poor than the Atlantic, so the Red Sea species have advantages over Atlantic species in the salty and nutrient-poor Eastern Mediterranean. Accordingly, Red Sea species invade the Mediterranean biota, and not vice versa; this phenomenon is known as the Lessepsian migration (after Ferdinand de Lesseps, the French engineer) or Erythrean invasion. The construction of the Aswan High Dam across the Nile River in the 1960s reduced the inflow of freshwater and nutrient-rich silt from the Nile into the Eastern Mediterranean, making conditions there even more like the Red Sea and worsening the impact of the invasive species.

Invasive species have become a major component of the Mediterranean ecosystem and have serious impacts on the Mediterranean ecology, endangering many local and endemic Mediterranean species. A first look at some groups of exotic species show that more than 70% of the non-indigenous decapods and about 63% of the exotic fishes occurring in the Mediterranean are of Indo Pacific origin,[65] introduced into the Mediterranean through the Suez Canal. This makes the Canal as the first pathway of arrival of "alien" species into the Mediterranean. The impacts of some lessepsian species have proven to be considerable mainly in the Levantine basin of the Mediterranean, where they are replacing native species and becoming a "familiar sight".

According to the International Union for Conservation of Nature definition, as well as Convention on Biological Diversity (CBD) and Ramsar Convention terminologies, they are alien species, as they are non-native (non-indigenous) to the Mediterranean Sea, and they are outside their normal area of distribution which is the Indo-Pacific region. When these species succeed in establishing populations in the Mediterranean Sea, compete with and begin to replace native species they are "Alien Invasive Species", as they are an agent of change and a threat to the native biodiversity. In the context of CBD, "introduction" refers to the movement by human agency, indirect or direct, of an alien species outside of its natural range (past or present). The Suez Canal, being an artificial (man made) canal, is a human agency. Lessepsian migrants are therefore "introduced" species (indirect, and unintentional). Whatever wording is chosen, they represent a threat to the native Mediterranean biodiversity, because they are non-indigenous to this sea. In recent years, the Egyptian government's announcement of its intentions to deepen and widen the canal have raised concerns from marine biologists, fearing that such an act will only worsen the invasion of Red Sea species into the Mediterranean, facilitating the crossing of the canal for yet additional species.[66]

Arrival of new tropical Atlantic species

In recent decades, the arrival of exotic species from the tropical Atlantic has become a noticeable feature. Whether this reflects an expansion of the natural area of these species that now enter the Mediterranean through the Gibraltar strait, because of a warming trend of the water caused by global warming; or an extension of the maritime traffic; or is simply the result of a more intense scientific investigation, is still an open question. While not as intense as the "lessepsian" movement, the process may be scientific interest and may therefore warrant increased levels of monitoring.[citation needed]

Sea-level rise

By 2100 the overall level of the Mediterranean could rise between 3 to 61 cm (1.2 to 24.0 in) as a result of the effects of climate change.[67] This could have adverse effects on populations across the Mediterranean:

  • Rising sea levels will submerge parts of Malta. Rising sea levels will also mean rising salt water levels in Malta's groundwater supply and reduce the availability of drinking water.[68]
  • A 30 cm (12 in) rise in sea level would flood 200 square kilometres (77 sq mi) of the Nile Delta, displacing over 500,000 Egyptians.[69]

Coastal ecosystems also appear to be threatened by sea level rise, especially enclosed seas such as the Baltic, the Mediterranean and the Black Sea. These seas have only small and primarily east-west movement corridors, which may restrict northward displacement of organisms in these areas.[70] Sea level rise for the next century (2100) could be between 30 cm (12 in) and 100 cm (39 in) and temperature shifts of a mere 0.05–0.1 °C in the deep sea are sufficient to induce significant changes in species richness and functional diversity.[71]

Pollution

Pollution in this region has been extremely high in recent years.[when?] The United Nations Environment Programme has estimated that 650,000,000 t (720,000,000 short tons) of sewage, 129,000 t (142,000 short tons) of mineral oil, 60,000 t (66,000 short tons) of mercury, 3,800 t (4,200 short tons) of lead and 36,000 t (40,000 short tons) of phosphates are dumped into the Mediterranean each year.[72] The Barcelona Convention aims to 'reduce pollution in the Mediterranean Sea and protect and improve the marine environment in the area, thereby contributing to its sustainable development.'[73] Many marine species have been almost wiped out because of the sea's pollution. One of them is the Mediterranean monk seal which is considered to be among the world's most endangered marine mammals.[74]

The Mediterranean is also plagued by marine debris. A 1994 study of the seabed using trawl nets around the coasts of Spain, France and Italy reported a particularly high mean concentration of debris; an average of 1,935 items per km2. Plastic debris accounted for 76%, of which 94% was plastic bags.[75]

Shipping

A cargo ship cruises towards the Strait of Messina

Some of the world's busiest shipping routes are in the Mediterranean Sea. It is estimated that approximately 220,000 merchant vessels of more than 100 tonnes cross the Mediterranean Sea each year—about one third of the world's total merchant shipping. These ships often carry hazardous cargo, which if lost would result in severe damage to the marine environment.

The discharge of chemical tank washings and oily wastes also represent a significant source of marine pollution. The Mediterranean Sea constitutes 0.7% of the global water surface and yet receives 17% of global marine oil pollution. It is estimated that every year between 100,000 t (98,000 long tons) and 150,000 t (150,000 long tons) of crude oil are deliberately released into the sea from shipping activities.

Approximately 370,000,000 t (360,000,000 long tons) of oil are transported annually in the Mediterranean Sea (more than 20% of the world total), with around 250–300 oil tankers crossing the sea every day. Accidental oil spills happen frequently with an average of 10 spills per year. A major oil spill could occur at any time in any part of the Mediterranean.[71]

Tourism

Antalya on the Turkish Riviera (Turquoise Coast) received more than 11 million international tourist arrivals in 2014.

The Mediterranean Sea is arguably among the most culturally diverse block basin sea regions in the world, with a unique combination of pleasant climate, beautiful coastline, rich history and various cultures. The Mediterranean region is the most popular tourist destination in the world—attracting approximately one third of the world's international tourists.[citation needed]

Tourism is one of the most important sources of income for many Mediterranean countries regardless of the man-made geopolitical conflicts that harbour coastal nations. In that regard, authorities around the Mediterranean have made it a point to extinguish rising man-made chaotic zones that would affect the economies, societies in neighboring coastal countries, let alone shipping routes. Naval and rescue components in the Mediterranean Sea are considered one of the very best due to the quick intercooperation of various Naval Fleets within proximity of each other. Unlike the vast open Oceans, the closed nature of the Mediterranean Sea provides a much more adaptable naval initiative among the coastal countries to provide effective naval and rescue missions, considered the safest and regardless of any man-made or natural disaster.

Tourism also supports small communities in coastal areas and islands by providing alternative sources of income far from urban centers. However, tourism has also played major role in the degradation of the coastal and marine environment. Rapid development has been encouraged by Mediterranean governments to support the large numbers of tourists visiting the region each year. But this has caused serious disturbance to marine habitats such as erosion and pollution in many places along the Mediterranean coasts.

Tourism often concentrates in areas of high natural wealth, causing a serious threat to the habitats of endangered Mediterranean species such as sea turtles and monk seals. Reductions in natural wealth may reduce incentives for tourists to visit.[71]

Overfishing

Fish stock levels in the Mediterranean Sea are alarmingly low. The European Environment Agency says that more than 65% of all fish stocks in the region are outside safe biological limits and the United Nations Food and Agriculture Organisation, that some of the most important fisheries—such as albacore and bluefin tuna, hake, marlin, swordfish, red mullet and sea bream—are threatened.[date missing]

There are clear indications that catch size and quality have declined, often dramatically, and in many areas larger and longer-lived species have disappeared entirely from commercial catches.

Large open water fish like tuna have been a shared fisheries resource for thousands of years but the stocks are now dangerously low. In 1999, Greenpeace published a report revealing that the amount of bluefin tuna in the Mediterranean had decreased by over 80% in the previous 20 years and government scientists warn that without immediate action the stock will collapse.

Aquaculture

Aquaculture in western Greece

Aquaculture is expanding rapidly—often without proper environmental assessment—and currently accounts for 30% of the fish protein consumed worldwide. The industry claims that farmed seafood lessens the pressure on wild fish stocks, yet many of the farmed species are carnivorous, consuming up to five times their weight in wild fish.

Mediterranean coastal areas are already over exposed to human influence, with pristine areas becoming ever scarcer. The aquaculture sector adds to this pressure, requiring areas of high water quality to set up farms. The installation of fish farms close to vulnerable and important habitats such as seagrass meadows is particularly concerning.

See also

Notes

References

  1. ^ Pinet, Paul R. (2008). Invitation to Oceanography. Jones & Barlett Learning. p. 220. ISBN 0-7637-5993-7.
  2. ^ "Microsoft Word — ext_abstr_East_sea_workshop_TLM.doc" (PDF). Retrieved 23 April 2010.
  3. ^ "Researchers predict Mediterranean Sea level rise — Headlines — Research – European Commission". Europa. 19 March 2009. Retrieved 23 April 2010.
  4. ^ "Mediterranean Sea". Encyclopædia Britannica. Retrieved 23 October 2015.
  5. ^ "entry μεσόγαιος". Liddell & Scott. Archived from the original on 2 December 2009.
  6. ^ Sallust, The Jugurthine War 17.
  7. ^ a b c d e Vella, Andrew P. (1985). "Mediterranean Malta" (PDF). Hyphen. 4 (5): 469–472. Archived from the original (PDF) on 29 March 2017. {{cite journal}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  8. ^ Özhan Öztürk claims that in Old Turkish ak also means "west" and that Akdeniz hence means "West Sea", while Karadeniz (Black Sea) means "North Sea". Özhan Öztürk. Pontus: Antik Çağ’dan Günümüze Karadeniz’in Etnik ve Siyasi Tarihi Genesis Yayınları. Ankara. 2011. pp. 5–9. Archived from the original on 15 September 2012. {{cite book}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)CS1 maint: location missing publisher (link)
  9. ^ David Abulafia (2011). The Great Sea: A Human History of the Mediterranean. Oxford University Press.
  10. ^ Rappoport, S. (Doctor of Philosophy, Basel). History of Egypt (undated, early 20th century), Volume 12, Part B, Chapter V: "The Waterways of Egypt", pages 248–257 (online). London: The Grolier Society.
  11. ^ Robert Davis (5 December 2003). Christian Slaves, Muslim Masters: White Slavery in the Mediterranean, the Barbary Coast and Italy, 1500–1800. Palgrave Macmillan. ISBN 9780333719664. Retrieved 17 January 2013.
  12. ^ "British Slaves on the Barbary Coast". Bbc.co.uk. Retrieved 17 January 2013.
  13. ^ C.I. Gable – Constantinople Falls to the Ottoman Turks - Boglewood Timeline – 1998 – Retrieved 3 September 2011.
  14. ^ "History of the Ottoman Empire, an Islamic Nation where Jews Lived"Sephardic Studies and Culture – Retrieved 3 September 2011.
  15. ^ Robert Guisepi – The Ottomans: From Frontier Warriors To Empire Builders – 1992 – History World International – Retrieved 3 September 2011.
  16. ^ "Migrant deaths prompt calls for EU action". Al Jazeera — English. 13 October 2013. Retrieved 12 December 2014.
  17. ^ "Schulz: EU migrant policy 'turned Mediterranean into graveyard'". EUobserver. 24 October 2013. Retrieved 12 December 2014.
  18. ^ "Novruz Mammadov: The Mediterranean become a burial ground".
  19. ^ "Over one million sea arrivals reach Europe in 2015". UNHCR – The UN Refugee Agency. 30 December 2015.
  20. ^ a b "Limits of Oceans and Seas, 3rd edition" (PDF). International Hydrographic Organization. 1953. Retrieved 20 April 2016.
  21. ^ Pinet, Paul R. (1996), Invitation to Oceanography (3rd ed.), St Paul, Minnesota: West Publishing Co., p. 202, ISBN 0-314-06339-0
  22. ^ Pinet 1996, p. 206.
  23. ^ a b Emeis, Kay-Christian; Struck, Ulrich; Schulz, Hans-Martin; Rosenberg, Reinhild; Bernasconi, Stefano; Erlenkeuser, Helmut; Sakamoto, Tatsuhiko; Martinez-Ruiz, Francisca (2000). "Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios". Palaeogeography, Palaeoclimatology, Palaeoecology. 158 (3–4): 259–280. Bibcode:2000PPP...158..259E. doi:10.1016/s0031-0182(00)00053-5.
  24. ^ Pinet 1996, pp. 206–207.
  25. ^ Pinet 1996, p. 207.
  26. ^ Israel, By Sue Bryant, (New Holland Publishers, 2008), page 72
  27. ^ Weather2Travel.com. "Marseille Climate: Monthly Weather Averages – France".{{cite web}}: CS1 maint: numeric names: authors list (link)
  28. ^ Weather2Travel.com. "Gibraltar (Westside) Climate: Monthly Weather Averages – Gibraltar".{{cite web}}: CS1 maint: numeric names: authors list (link)
  29. ^ Weather2Travel.com. "Malaga Climate: Monthly Weather Averages – Costa del Sol".{{cite web}}: CS1 maint: numeric names: authors list (link)
  30. ^ Weather2Travel.com. "Athens Climate: Monthly Weather Averages – Greece – Greece".{{cite web}}: CS1 maint: numeric names: authors list (link)
  31. ^ Weather2Travel.com. "Barcelona Climate: Monthly Weather Averages – Spain".{{cite web}}: CS1 maint: numeric names: authors list (link)
  32. ^ Weather2Travel.com. "Iraklion Climate: Monthly Weather Averages – Crete – Crete".{{cite web}}: CS1 maint: numeric names: authors list (link)
  33. ^ Weather2Travel.com. "Venice Climate: Monthly Weather Averages – Venetian Riviera".{{cite web}}: CS1 maint: numeric names: authors list (link)
  34. ^ Weather2Travel.com. "Valencia Climate: Monthly Weather Averages – Spain – Spain".{{cite web}}: CS1 maint: numeric names: authors list (link)
  35. ^ Weather2Travel.com. "Valletta Climate: Monthly Weather Averages – Malta – Malta".{{cite web}}: CS1 maint: numeric names: authors list (link)
  36. ^ Weather2Travel.com. "Alexandria Climate: Monthly Weather Averages – Egypt".{{cite web}}: CS1 maint: numeric names: authors list (link)
  37. ^ Weather2Travel.com. "Naples Climate: Monthly Weather Averages – Neapolitan Riviera".{{cite web}}: CS1 maint: numeric names: authors list (link)
  38. ^ Weather2Travel.com. "Larnaca Climate: Monthly Weather Averages – Cyprus".{{cite web}}: CS1 maint: numeric names: authors list (link)
  39. ^ Weather2Travel.com. "Limassol Climate: Monthly Weather Averages – Cyprus".{{cite web}}: CS1 maint: numeric names: authors list (link)
  40. ^ Weather2Travel.com. "Tel Aviv Climate: Monthly Weather Averages – Israel".{{cite web}}: CS1 maint: numeric names: authors list (link)
  41. ^ William Ryan (2008). "Decoding the Mediterranean salinity crisis". Sedimentology. 56 (1): 95–136. Bibcode:2009Sedim..56...95R. doi:10.1111/j.1365-3091.2008.01031.x.
  42. ^ William Ryan (2008). "Modeling the magnitude and timing of evaporative drawdown during the Messinian salinity crisis" (PDF). Sedimentology. 5 (3–4): 229.
  43. ^ Garcia-Castellanos, D., Estrada, F., Jiménez-Munt, I., Gorini, C., Fernàndez, M., Vergés, J., De Vicente, R. (10 December 2009) Catastrophic flood of the Mediterranean after the Messinian salinity crisis, Nature 462, pp. 778–781, doi:10.1038/nature08555
  44. ^ Elmer LaMoreaux, Philip (2001). "Geologic/Hydrogeologic Setting and Classification of Springs". Springs and Bottled Waters of the World: Ancient History, Source, Occurrence, Quality and Use. Springer. p. 57. ISBN 978-3-540-61841-6.
  45. ^ Žumer, Jože (2004). "Odkritje podmorskih termalnih izvirov" [Discovery of submarine thermal springs] (PDF). Geografski obzornik (in Slovenian). 51 (2). Association of the Geographical Societies of Slovenia: 11–17. ISSN 0016-7274. Template:Sl icon
  46. ^ de la Vara, Alba; Topper, Robin P.M.; Meijer, Paul Th.; Kouwenhoven, Tanja J. (2015). "Water exchange through the Betic and Rifian corridors prior to the Messinian Salinity Crisis: A model study". Paleoceanography. 30 (5): 548–557. Bibcode:2015PalOc..30..548V. doi:10.1002/2014PA002719.
  47. ^ Krijgsman, W.; Fortuinb, A. R.; Hilgenc, F. J.; Sierrod, F. J. (2001). "Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity". Sedimentary Geology. 140: 43–60. Bibcode:2001SedG..140...43K. doi:10.1016/S0037-0738(00)00171-8.
  48. ^ Gargani J., Rigollet C. (2007). "Mediterranean Sea level variations during the Messinian Salinity Crisis". Geophysical Research Letters. 34 (L10405): L10405. Bibcode:2007GeoRL..3410405G. doi:10.1029/2007GL029885.
  49. ^ Gargani J.; Moretti I.; Letouzey J. (2008). "Evaporite accumulation during the Messinian Salinity Crisis : The Suez Rift Case". Geophysical Research Letters. 35 (2): L02401. Bibcode:2008GeoRL..35.2401G. doi:10.1029/2007gl032494.
  50. ^ Govers, R. (2009). Choking the Mediterranean to dehydration: The Messinian salinity crisis Geology, 37 (2), 167–170 doi:10.1130/G25141A.1 Link
  51. ^ Garcia-Castellanos, D., A. Villaseñor, 2011. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar Arc. Nature, 2011-12-15 pdf here Link
  52. ^ Agusti, J; Moya-Sola, S (1990). "Mammal extinctions in the Vallesian (Upper Miocene)". Lecture Notes in Earth Sciences. Lecture Notes in Earth Sciences. 30: 425–432. doi:10.1007/BFb0011163. ISBN 3-540-52605-6. ISSN 1613-2580. (Abstract)
  53. ^ Politische Geographien Europas: Annäherungen an ein umstrittenes Konstrukt, Anke Strüver, LIT Verlag Münster, 2005, p.43
  54. ^ FJ, Hilgen. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale, 104 (1991) 226–244 Earth and Planetary Science Letters, 1991.[1]
  55. ^ Hsu K.J., "When the Mediterranean Dried Up" Scientific American, Vol. 227, December 1972, p32
  56. ^ a b c d e f g h The Nature of Mediterranean Europe: An Ecological History, by Alfred Thomas Grove, Oliver Rackham, Yale University Press, 2003, review at Yale university press Nature of Mediterranean Europe: An Ecological History (review) Brian M. Fagan, Journal of Interdisciplinary History, Volume 32, Number 3, Winter 2002, pp. 454–455 |
  57. ^ Little Ice Ages: Ancient and Modern, Jean M. Grove, Taylor & Francis, 2004
  58. ^ Christian Pfister (Hrsg.), Das 1950er Syndrom: Der Weg in die Konsumgesellschaft, Bern 1995
  59. ^ The wave that destroyed Atlantis Harvey Lilley, BBC News Online, 2007-04-20. Retrieved 2007-04-21.
  60. ^ Antonio Denti, "Super volcano", global danger, lurks near Pompeii, Reuters, 3 August 2012.
  61. ^ Isaia, Roberto; Paola Marianelli; Alessandro Sbrana (2009). "Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: Implications for caldera dynamics and future eruptive scenarios". Geophysical Research Letters. 36 (L21303): L21303. Bibcode:2009GeoRL..3621303I. doi:10.1029/2009GL040513.
  62. ^ McGuire, Bill (16 October 2003). "In the shadow of the volcano". guardian.co.uk. Guardian News and Media Limited. Retrieved 8 May 2010.
  63. ^ a b "Alle kennisdossiers van het Instituut Fysieke Veiligheid" (PDF).
  64. ^ EU Solidarity Fund Website 2003 proposal of EUR 47.6 million for Italian regions hit by natural disasters
  65. ^ "IUCN Guidelines for the Prevention of Biodiversity Loss Caused by Alien Invasive Species" (PDF). International Union for Conservation of Nature. 2000. Archived from the original (PDF) on 15 January 2009. Retrieved 11 August 2009. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  66. ^ Galil, B.S. and Zenetos, A. (2002). A sea change: exotics in the eastern Mediterranean Sea, in: Leppäkoski, E. et al. (2002). Invasive aquatic species of Europe: distribution, impacts and management. pp. 325–336.
  67. ^ "Mediterranean Sea Level Could Rise By Over Two Feet, Global Models Predict". Science Daily. 3 March 2009.
  68. ^ "Briny future for vulnerable Malta". BBC News. 4 April 2007.
  69. ^ "Egypt fertile Nile Delta falls prey to climate change". 28 January 2010. Archived from the original on 9 February 2011. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  70. ^ Nicholls, R.J.; Klein, R.J.T. (2005). Climate change and coastal management on Europe's coast, in: Vermaat, J.E. et al. (Ed.) (2005). Managing European coasts: past, present and future. pp. 199–226.
  71. ^ a b c "Other threats in the Mediterranean | Greenpeace International". Greenpeace. Retrieved 23 April 2010.
  72. ^ "Pollution in the Mediterranean Sea. Environmental issues". Explorecrete.com. Retrieved 23 April 2010.
  73. ^ "EUROPA". Europa. Archived from the original on 9 April 2009. Retrieved 23 April 2010. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  74. ^ "Mediterranean Monk Seal Fact Files: Overview". Monachus-guardian.org. 5 May 1978. Retrieved 23 April 2010.
  75. ^ "Marine Litter: An Analytical Overview" (PDF). United Nations Environment Programme. 2005. Retrieved 1 August 2008.