Jump to content

Continuous Hahn polynomials

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Nejssor (talk | contribs) at 16:14, 5 January 2018 (Generating functions: Corrected generating function and added a second one). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by

Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the Hahn polynomials, and the continuous dual Hahn polynomials Sn(x;a,b,c). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials Qn(x;α,β, N;q), and so on.

Orthogonality

The continuous Hahn polynomials pn(x;a,b,c,d) are orthogonal with respect to the weight function

In particular, they satisfy the orthogonality relation[1][2]

Recurrence and difference relations

The sequence of continuous Hahn polynomials satisfies the recurrence relation[3]

Rodrigues formula

The continuous Hahn polynomials are given by the Rodrigues-like formula[4]

Generating functions

The continuous Hahn polynomials have the following generating function:[5]

A second, distinct generating function is given by

Relation to other polynomials

References

  • Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten, 2: 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  1. ^ Koekoek, Lesky, & Swarttouw (2010), p. 200.
  2. ^ Askey, R. (1985), "Continuous Hahn polynomials", J. Phys. A: Math. Gen. 18: pp. L1017-L1019.
  3. ^ Koekoek, Lesky, & Swarttouw (2010), p. 201.
  4. ^ Koekoek, Lesky, & Swarttouw (2010), p. 202.
  5. ^ Koekoek, Lesky, & Swarttouw (2010), p. 202.