Jump to content

Neurosurgery

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 98.215.153.31 (talk) at 03:41, 7 April 2018 (Main divisions). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Neurosurgery procedure using stereotaxy
Stereotactic guided insertion of DBS electrodes in neurosurgery
Occupation
Activity sectors
Surgery
Description
Education required

or

or

or

Fields of
employment
Hospitals, Clinics

Neurosurgery, or neurological surgery is the medical specialty concerned with the prevention, diagnosis, surgical treatment, and rehabilitation of disorders which affect any portion of the nervous system including the brain, spinal cord, peripheral nerves, and cerebrovascular system.[1] Neurosurgery is often colloquially referred to as "brain surgery" though neurosurgeons often operate on the spinal cord and peripheral nervous system as well.

Education and context

In different countries, there are different requirements for an individual to legally practice neurosurgery, and there are varying methods through which they must be educated. In most countries, neurosurgeon training requires a minimum period of seven years after graduating from medical school.[citation needed]

United States

In the United States, a neurosurgeon must generally complete four years of undergraduate education, four years of medical school, and seven years of residency (PGY-1-7).[2] Most, but not all, residency programs have some component of basic science or clinical research. Neurosurgeons may pursue additional training in the form of a fellowship, after residency or in some cases, as a senior resident. These fellowships include pediatric neurosurgery, trauma/neurocritical care, functional and stereotactic surgery, surgical neuro-oncology, radiosurgery, neurovascular surgery, skull-base surgery, peripheral nerve and spine surgery.[3] In the U.S., neurosurgery is considered a highly competitive specialty composed of 0.6% of all practicing physicians.[citation needed]

United Kingdom

In the United Kingdom, students must gain entry into medical school. MBBS qualification (Bachelor of Medicine, Bachelor of Surgery) takes four to six years depending on the student's route. The newly qualified physician must then complete foundation training lasting two years; this is a paid training program in a hospital or clinical setting covering a range of medical specialties including surgery. Junior doctors then apply to enter the neurosurgical pathway. Unlike most other surgical specialties, it currently has its own independent training pathway which takes around eight years (ST1-8); before being able to sit for consultant exams with sufficient amounts of experience and practice behind them. Neurosurgery remains consistently amongst the most competitive medical specialties in which to obtain entry.[4]

History

Neurosurgery, or the premeditated incision into the head for pain relief, has been around for thousands of years, but notable advancements in neurosurgery have only come within the last hundred years.[5]

Ancient

The Incas appear to have practiced a procedure known as trepanation since the late Stone age.[6] During the Middle Ages in Arabia from 936 to 1013 AD, Al-Zahrawi performed surgical treatments of head injuries, skull fractures, spinal injuries, hydrocephalus, subdural effusions and headache.[7]

Neurosurgery in the Neolithic Age

In 1910, Paul Berger excavated underneath a Bronze age hearth near Halle, Germany, where he unearthed human remains that showed crude surgical openings in the skull. The remains were dated to between 2700 – 2200 BCE. The skull had two trephinations and these operations were performed at different times. Trephinations are crude surgical holes made through either scraping, cutting, or drilling away the layers of bone, and great care is taken to preserve the outermost lining of the brain, the dura mater. Further analysis of the bones concluded that the areas around the holes began to heal, which suggests that this person survived for months to years after the trephinations. Researchers hypothesize that since certain regions contained more skulls with trephinations, this practice may be rooted in superstitious beliefs. Trephinations were conducted “with rudimental anesthetic, antiseptic, and technological aids.”[8]

Neurosurgery in medieval Africa

Trephinations were practiced in Africa as well, and there are accounts written on papyrus that mention performing a trephination on a pharaoh right before his death in order to allow his soul to escape his body. In the Middle Ages, there were a number of prominent African researchers who studied and developed neurosurgical techniques. These practices were taught in surrounding medical schools. The work of Abulkassim Al Zahrawi (936-1013 CE), an Arabic physician, was translated into Latin, Hebrew, and French. His work made its way into European medical schools during the Renaissance period, placing him among the influences of Galen and Hippocrates. Al Zahrawi provided detailed accounts of neurosurgical procedures to correct neuropathological ailments, developed surgical instruments that resemble surgical tools of today, gave accounts for creating aseptic environments using alcohol in wine, and suggested using opium as an anesthetic for patients. For reasons unknown, these exercises fell out of practice in Africa during the fifteenth century, and trephination was the only neurosurgical technique that continued to be performed.[9]

Development in the early 1900s

Looking at the structure of the skull without operating became possible with the advent of X-ray machines in 1896. Surviving records from Dr. Harvey Cushing at Johns Hopkins Hospital revealed greater care being taken in neurosurgery. During this time, surgeons did not wear gloves or masks and operated as quickly as possible. Cushing was critical of this practice and compared these operations to “the way a commercial traveler grabs breakfast at a lunch counter.” He studied how blood vessels in the brain reacted to changes in intracranial pressure by placing glass windows in the skulls of dogs. Using what he learned form these studies, he was able to perform brain tumor resections. Cushing’s efforts to combat sepsis and improve surgical techniques decreased the mortality rates for penetrating skull injuries from 54.4% to 28.8% over the course of a three-month period.[10]

Modern

File:HochbergFig1.jpg

There was not much advancement in neurosurgery until the late nineteenth and early twentieth centuries, when electrodes were placed on the brain and superficial tumors were removed.

History of electrodes in the brain: In 1878 Richard Canton discovered that electrical signals transmitted through an animal's brain. In 1950 Dr. Jose Delgado invented the first electrode that was implanted in an animal's brain, using it to make it run and change direction. In 1972 the cochlear implant, a neurological prosthetic that allowed deaf people to hear was marketed for commercial use. In 1998 researcher Philip Kennedy implanted the first brain computer interface (BCI) into a human subject.[1]

History of tumor removal: In 1879 after locating it via neurological signs alone, Scottish surgeon William Macewen (1848–1924) performed the first successful brain tumor removal.[2] On November 25, 1884 after English physician Alexander Hughes Bennett (1848–1901) used Macewen's technique to locate it, English surgeon Rickman Godlee (1849–1925) performed the first primary brain tumor removal,[3][11] which differs from Macewen's operation in that Bennett operated on the exposed brain, whereas Macewen operated outside of the "brain proper" via trepanation.[4] On March 16, 1907 Austrian surgeon Hermann Schloffer became the first to successfully remove a pituitary tumor.[12]

Modern surgical instruments

Aluminium headrest system for neurosurgical procedures

The main advancements in neurosurgery came about as a result of highly crafted tools. Modern neurosurgical tools, or instruments, include chisels, curettes, dissectors, distractors, elevators, forcepts, hooks, impactors, probes, suction tubes, power tools, and robots.[13][14] Most of these modern tools, like chisels, elevators, forcepts, hooks, impactors, and probes, have been in medical practice for a relatively long time. The main difference of these tools, pre- and post-advancement in neurosurgery, were the precision with which they were crafted. These tools are crafted with edges that are within a millimeter of desired accuracy.[15] Other tools such as hand-held power saws and robots have only recently been commonly used inside of a neurological operating room.

Main divisions

General neurosurgery involves most neurosurgical conditions including neuro-trauma and other neuro-emergencies such as intracranial hemorrhage. Most level 1 hospitals (in the U.S., a level I hospital, for those hospitals that contain emergency and operating rooms and trauma services, is the most advanced of five levels of care; these must have medical and surgical specialists from the main specialties readily available 24/7 on-site, and are usually large, well-rated, high-research teaching hospitals affiliated with an area medical school) have this kind of practice, at least for adults.[citation needed]

Specialized branches have developed to cater to special and difficult conditions. These specialized branches co-exist with general neurosurgery in more sophisticated hospitals. To practice advanced specialization within neurosurgery, additional higher fellowship training of one to two years is expected from the neurosurgeon. Some of these divisions of neurosurgery are:

  1. Vascular neurosurgery
  2. Interventional neuroradiology / Endovascular surgical neuroradiology
  3. Stereotactic neurosurgery, functional neurosurgery, and epilepsy surgery (the latter includes partial or total corpus callosotomy – severing part or all of the corpus callosum to stop or lessen seizure spread and activity, and the surgical removal of functional, physiological and/or anatomical pieces or divisions of the brain, called epileptic foci, that are operable and that are causing seizures, and also the more radical and very, very rare partial or total lobectomy, or even hemispherectomy – the removal of part or all of one of the lobes, or one of the cerebral hemispheres of the brain; those two procedures, when possible, are also very, very rarely used in oncological neurosurgery or to treat very severe neurological trauma, such as stab or gunshot wounds to the brain)
  4. Oncological neurosurgery also called neurosurgical oncology; includes pediatric oncological neurosurgery; treatment of benign and malignant central and peripheral nervous system cancers and pre-cancerous lesions in adults and children (including, among others, glioblastoma multiforme and other gliomas, brain stem cancer, astrocytoma, pontine glioma, medulloblastoma, spinal cancer, tumors of the meninges and intracranial spaces, secondary metastases to the brain, spine, and nerves, and peripheral nervous system tumors)
  5. Skull base surgery
  6. Spinal neurosurgery
  7. Peripheral nerve surgery
  8. Pediatric neurosurgery (for cancer, seizures, bleeding, stroke, cognitive disorders or congenital neurological disorders)

Neuropathology

Neuropathology is a specialty within the study of pathology focused on the disease of the brain, spinal cord, and neural tissue.[16] This includes the central nervous system and the peripheral nervous system. Tissue analysis comes from either surgical biopsies or post mortem autopsies. Common tissue samples include muscle fibers and nervous tissue.[17] Common applications of neuropathology include studying samples of tissue in patients who have Parkinson's disease, Alzheimer's disease, dementia, Huntington's disease, amyotrophic lateral sclerosis, mitochondria disease, and any disorder that has neural deterioration in the brain or spinal cord.[18][19]

History

Pathology has been studied ever since men have decided to cut each other open and see what is inside. But only within the last few hundred years has medicine focused on a tissue- and organ-based approach to tissue disease. In 1810, Thomas Hodgkin started to look at the damaged tissue for the cause, not the gods. This was conjoined with the emergence of microscopy and started the current understanding of how the tissue of the human body is studied.[20]

Neuroanesthesia

Neuroanesthesia is a field of anesthesiology which focuses on neurosurgery. Anesthesia is not used during the middle of an "awake" brain surgery. Awake brain surgery is where the patient is conscious for the middle of the procedure and sedated for the beginning and end. This procedure is used when the tumor does not have clear boundaries and the surgeon wants to know if they are invading on critical regions of the brain which involve functions like talking, cognition, vision, and hearing. It will also be conducted for procedures which the surgeon is trying to combat epileptic seizures.[21]

History

Early forms of neuroanesthesia were found during procedures of trepanning in Southern America, like Peru. In these procedures coca leaves and datura plants were used to manage pain as the person had dull primitive tools cut open their skull. In 400 BC The physician Hippocrates made accounts of using different wines to sedate patients while trepanning. In 60 AD Dioscorides, a physician, pharmacologist, and botanist, detailed how mandrake, henbane, opium, and alcohol were used to put patients to sleep during trepanning. In 972 AD two brother surgeons, in modern-day India, used "samohine" to sedate a patient while removing a small tumor and awoke the patient by pouring onion and vinegar in the patients mouth. Since then, multiple cocktails have been derived in order to sedate a patient during a brain surgery. The most recent form of neuroanesthesia is the combination of carbon dioxide, hydrogen, and nitrogen. This was discovered in the 18th century by Sir Humphry Davy and brought into the operating room by Sir Astley Cooper.[22]

Neurosurgery methods

Neurosurgery
ICD-10-PCS00-01
ICD-9-CM0105
MeSHD019635
OPS-301 code5-01...5-05

Neuroradiology plays a key role not only in diagnosis but also in the operative phase of neurosurgery.[citation needed]

Neuroradiology methods are used in modern neurosurgery diagnosis and treatment. They include computer-assisted imaging computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), magnetoencephalography (MEG), and stereotactic radiosurgery. Some neurosurgery procedures involve the use of intra-operative MRI and functional MRI.[23]

In conventional open surgery the neurosurgeon opens the skull, creating a large opening to access the brain. Techniques involving smaller openings with the aid of microscopes and endoscopes are now being used as well. Methods that utilize small craniotomies in conjunction with high-clarity microscopic visualization of neural tissue offer excellent results. However, the open methods are still traditionally used in trauma or emergency situations.[12][13]

Microsurgery is utilized in many aspects of neurological surgery. Microvascular techniques are used in EC-IC bypass surgery and in restoration carotid endarterectomy. The clipping of an aneurysm is performed under microscopic vision. Minimally invasive spine surgery utilizes microscopes or endoscopes. Procedures such as microdiscectomy, laminectomy, and artificial disc replacement rely on microsurgery.[14]

Using stereotaxy neurosurgeons can approach a minute target in the brain through a minimal opening. This is used in functional neurosurgery where electrodes are implanted or gene therapy is instituted with a high level of accuracy as in the case of Parkinson's disease or Alzheimer's disease. Using the combination method of open and stereotactic surgery, intraventricular hemorrhages can potentially be evacuated successfully.[15] Conventional surgery using image guidance technologies is also becoming common and is referred to as surgical navigation, computer-assisted surgery, navigated surgery, and stereotactic navigation. Image-guided surgery systems, like Curve Image Guided Surgery and StealthStation, use cameras or electromagnetic fields to capture and relay the patient’s anatomy, and the surgeon’s precise movements in relation to the patient, to computer monitors in the operating room. These sophisticated computerized systems are used before and during surgery to help orient the surgeon with three-dimensional images of the patient’s anatomy including the tumor.[citation needed]

Minimally invasive endoscopic surgery is commonly utilized by neurosurgeons when appropriate. Techniques such as endoscopic endonasal surgery are used in pituitary tumors, craniopharyngiomas, chordomas, and the repair of cerebrospinal fluid leaks. Ventricular endoscopy is used in the treatment of intraventricular bleeds, hydrocephalus, colloid cyst and neurocysticercosis. Endonasal endoscopy is at times carried out with neurosurgeons and ENT surgeons working together as a team.[citation needed]

Repair of craniofacial disorders and disturbance of cerebrospinal fluid circulation is done by neurosurgeons who also occasionally team up with maxillofacial and plastic surgeons. Cranioplasty for craniosynostosis is performed by pediatric neurosurgeons with or without plastic surgeons.[citation needed]

Neurosurgeons are involved in stereotactic radiosurgery along with radiation oncologists in tumor and AVM treatment. Radiosurgical methods such as Gamma Knife, Cyberknife and Novalis Radiosurgery are used as well.[24]

A common procedure performed in neurosurgery is the placement of ventriculoperitoneal shunts (commonly referred to as "VP shunts"). In pediatric practice, VP shunts are commonly placed in cases of congenital hydrocephalus. The most common indication for this procedure in adults is normal-pressure hydrocephalus (NPH).[citation needed]

Neurosurgery of the spine covers the cervical, thoracic and lumbar spine. Some indications for spine surgery include spinal cord compression resulting from trauma, arthritis of the spinal discs, or spondylosis. In cervical cord compression, patients may have difficulty with gait, balance issues, and/or numbness and tingling in the hands or feet. Spondylosis is the condition of spinal disc degeneration and arthritis that may compress the spinal canal. This condition can often result in bone spurring and disc herniation. Power drills and special instruments are often used to correct any compression problems of the spinal canal. Disc herniations of spinal vertebral discs are removed with special rongeurs. This procedure is known as a discectomy. Generally once a disc is removed it is replaced by an implant which will create a bony fusion between vertebral bodies above and below. Instead, a mobile disc could be implanted into the disc space to maintain mobility. This is commonly used in cervical disc surgery. At times instead of disc removal a Laser discectomy could be used to decompress a nerve root. This method is mainly used for lumbar discs. Laminectomy is the removal of the lamina portion of the vertebrae of the spine in order to make room for the compressed nerve tissue.[citation needed]

Radiology-assisted spine surgery uses minimally-invasive procedures. They include the techniques of vertebroplasty and kyphoplasty, in which certain types of spinal fractures are managed.[25] Potentially unstable spines require spine fusions. At present these procedures include complex instrumentation. Spine fusions maybe performed as open surgery or as minimally invasive surgery. Anterior cervical diskectomy and fusion is a common surgery that is performed for disc disease of the cervical spine.[26] However, each method described above may not work in all patients. Therefore, careful selection of patients for each procedure is important. If there is prior permanent neural tissue damage spinal surgery may not take away the symptoms.[citation needed]

Surgery for chronic pain and spasticity is considered often a sub-branch of functional Neurosurgery but can be regarded as a separate specialty in its own right. Some of the common techniques include implantation of deep brain stimulators, spinal cord stimulators, peripheral stimulators and pain/baclofen pumps.[citation needed] Surgical lesioning techniques focused on the spinal cord such as punctate midline myelotomy for intractable cancer pain of the abdomen or pelvis (typically targeted at T8), high-level hemicordotomy (and rarely bilateral cordotomy accepting the potential risk of Ondine’s curse) for intractable upper extremity pain secondary to cancer, dorsal root exit zone (DREZ) rhizotomy for nerve root avulsion pain (for avulsions demonstrating no recovery on emg testing months after the injury), and selective dorsal rhizotomy for spastic diplegia are all rarely performed and considered by neurosurgical pain specialists to be often drastically underutilized given their profound efficacy and patient satisfaction when patients are carefully selected and appropriately counseled on the deficits implied by a particular type of spinal cord lesioning [citation needed]

Surgery of the peripheral nervous system is also possible, and includes the very common procedures of carpal tunnel decompression and peripheral nerve transposition. Numerous other types of nerve entrapment conditions and other problems with the peripheral nervous system are treated as well.[citation needed]

Conditions

Conditions treated by neurosurgeons include, but are not limited to:[27]

Notable neurosurgeons

See also

References

  1. ^ a b "Archived copy". Archived from the original on 2016-02-28. Retrieved 2016-02-11. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)CS1 maint: archived copy as title (link)
  2. ^ a b Preul, Mark C. (2005). "History of brain tumor surgery". Neurosurgical Focus. 18 (4): 1. doi:10.3171/foc.2005.18.4.1.
  3. ^ a b Kirkpatrick, Douglas B. (1984). "The first primary brain-tumor operation". Journal of Neurosurgery. 61 (5): 809–13. doi:10.3171/jns.1984.61.5.0809. PMID 6387062.
  4. ^ a b "Phineas Gage Information". The University of Akron.
  5. ^ Wickens, Andrew P. (2014-12-08). A History of the Brain: From Stone Age surgery to modern neuroscience. Psychology Press. ISBN 9781317744825.
  6. ^ Andrushko, Valerie A.; Verano, John W. (September 2008). "Prehistoric trepanation in the Cuzco region of Peru: A view into an ancient Andean practice". American Journal of Physical Anthropology. 137 (1): 4–13. doi:10.1002/ajpa.20836. PMID 18386793.
  7. ^ Al-Rodhan, N. R.; Fox, J. L. (1986-07-01). "Al-Zahrawi and Arabian neurosurgery, 936-1013 AD". Surgical Neurology. 26 (1): 92–95. doi:10.1016/0090-3019(86)90070-4. ISSN 0090-3019. PMID 3520907.
  8. ^ Alfieri, Alex; Strauss, Christian; Meller, Harald; Stoll-Tucker, Bettina; Tacik, Pawel; Brandt, Silvio (2012). "The Woman of Pritschoena: An Example of the German Neolithic Neurosurgery in Saxony-Anhalt". Journal Of The History Of The Neurosciences. 21 (2): 139–146. doi:10.1080/0964704X.2011.575117. PMID 22428736.
  9. ^ el Khamlichi, A. (1998). "African neurosurgery part I: Historical outline". Surgical Neurology. 49 (2): 222–227. doi:10.1016/S0090-3019(96)00422-3. PMID 9457276.
  10. ^ Kinsman, Michael; Pendleton, Courtney; Quinones-Hinojosa, Alfredo; Cohen-Gadol, Aaron A. (2013). "Harvey Cushing's Early Experience with the Surgical Treatment of Head Trauma". Journal Of The History Of The Neurosciences. 22 (1): 96–115. doi:10.1080/0964704X.2012.671050. PMID 23323535.
  11. ^ "Alexander Hughes Bennett (1848-1901): Rickman John Godlee (1849-1925)". CA: A Cancer Journal for Clinicians. 24 (3): 169–170. 1974. doi:10.3322/canjclin.24.3.169. PMID 4210862.
  12. ^ a b "History of Pituitary Tumors and Microneurosurgery". www.neurosurgery.org.
  13. ^ a b "Neurosurgery surgical power tools". www.medicalexpo.com.
  14. ^ a b "Neurosurgical Instruments". www.stealthsurgical.com.
  15. ^ a b Lauren Ingram (26 August 2013). "Technology increases precision, safety during neurosurgery". Penn State University.
  16. ^ "Division of Neuropathology". Vanderbilt University.[failed verification]
  17. ^ "The Nerve Center of Pathology". Stanford University.[failed verification]
  18. ^ "Chapter 9: Degenerative diseases". www.neuropathology-web.org.
  19. ^ Filosto, Massimiliano; Tomelleri, Giuliano; Tonin, Paola; Scarpelli, Mauro; Vattemi, Gaetano; Rizzuto, Nicolò; Padovani, Alessandro; Simonati, Alessandro (2007). "Neuropathology of mitochondrial diseases". Bioscience Reports. 27 (1–3): 23–30. doi:10.1007/s10540-007-9034-3. PMID 17541738.
  20. ^ van den Tweel, Jan G.; Taylor, Clive R. (2010). "A brief history of pathology". Virchows Archiv. 457 (1): 3–10. doi:10.1007/s00428-010-0934-4. PMC 2895866. PMID 20499087.
  21. ^ "Awake Brain Surgery (Intraoperative Brain Mapping)". Johns Hopkins Medicine.
  22. ^ Chivukula, Srinivas; Grandhi, Ramesh; Friedlander, Robert M. (2014). "A brief history of early neuroanesthesia". Neurosurgical Focus. 36 (4): E2. doi:10.3171/2014.2.FOCUS13578. PMID 24684332.
  23. ^ Castillo, Mauricio (2005). Neuroradiology Companion: Methods, Guidelines, and Imaging Fundamentals, 3rd ed. Philadelphia: Lippincott Williams & Wilkins. pp. 1–428. ISBN 1451111754.
  24. ^ https://web.archive.org/web/20130605215617/http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/neurology.html. Archived from the original on 2013-06-05. {{cite web}}: Missing or empty |title= (help); Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  25. ^ Principles of Neurosurgery, Rengachary, Ellenbogen[full citation needed][page needed]
  26. ^ Jandial, Rahul; McCormick, Paul; Black, Peter (2011). Core Techniques in Operative Neurosurgery. Elsevier Health Sciences. ISBN 1437737722.[page needed]
  27. ^ Greenberg., Mark S. (2010-01-01). Handbook of neurosurgery. Greenberg Graphics. ISBN 9781604063264. OCLC 892183792.