This gene encodes an apoptosis inhibitory protein whose expression prevents apoptosis after growth factor deprivation. This protein suppresses the transcription factor E2F1-induced apoptosis and also interacts with, and negatively regulates acinus, a nuclear factor involved in apoptotic DNA fragmentation. Its depletion enhances the cytotoxic action of chemotherapeutic drugs. Crystal structure of API5 exhibited the function for protein-protein interaction [7]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Tewari M, Yu M, Ross B, Dean C, Giordano A, Rubin R (September 1997). "AAC-11, a novel cDNA that inhibits apoptosis after growth factor withdrawal". Cancer Research. 57 (18): 4063–9. PMID9307294.
^Han BG, Kim KH, Lee SJ, Jeong KC, Cho JW, Noh KH, Kim TW, Kim SJ, Yoon HJ, Suh SW, Lee S, Lee BI (March 2012). "Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules". The Journal of Biological Chemistry. 287 (14): 10727–37. doi:10.1074/jbc.M111.317594. PMID22334682.{{cite journal}}: CS1 maint: unflagged free DOI (link)
Further reading
Gianfrancesco F, Esposito T, Ciccodicola A, D'Esposito M, Mazzarella R, D'Urso M, Forabosco A (1999). "Molecular cloning and fine mapping of API5L1, a novel human gene strongly related to an antiapoptotic gene". Cytogenetics and Cell Genetics. 84 (3–4): 164–6. doi:10.1159/000015247. PMID10393420.
Kim JW, Cho HS, Kim JH, Hur SY, Kim TE, Lee JM, Kim IK, Namkoong SE (April 2000). "AAC-11 overexpression induces invasion and protects cervical cancer cells from apoptosis". Laboratory Investigation; A Journal of Technical Methods and Pathology. 80 (4): 587–94. doi:10.1038/labinvest.3780008. PMID10780674.
Van den Berghe L, Laurell H, Huez I, Zanibellato C, Prats H, Bugler B (November 2000). "FIF [fibroblast growth factor-2 (FGF-2)-interacting-factor], a nuclear putatively antiapoptotic factor, interacts specifically with FGF-2". Molecular Endocrinology. 14 (11): 1709–24. doi:10.1210/me.14.11.1709. PMID11075807.
Sutherland HG, Mumford GK, Newton K, Ford LV, Farrall R, Dellaire G, Cáceres JF, Bickmore WA (September 2001). "Large-scale identification of mammalian proteins localized to nuclear sub-compartments". Human Molecular Genetics. 10 (18): 1995–2011. doi:10.1093/hmg/10.18.1995. PMID11555636.
Li Z, Hu CY, Mo BQ, Xu JD, Zhao Y (April 2003). "[Effect of beta-carotene on gene expression of breast cancer cells]". Ai Zheng = Aizheng = Chinese Journal of Cancer. 22 (4): 380–4. PMID12703993.
Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (January 2005). "Nucleolar proteome dynamics". Nature. 433 (7021): 77–83. doi:10.1038/nature03207. PMID15635413.
Kim JE, Tannenbaum SR, White FM (2005). "Global phosphoproteome of HT-29 human colon adenocarcinoma cells". Journal of Proteome Research. 4 (4): 1339–46. doi:10.1021/pr050048h. PMID16083285.
Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (November 2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID17081983.
^Han BG, Kim KH, Lee SJ, Jeong KC, Cho JW, Noh KH, Kim TW, Kim SJ, Yoon HJ, Suh SW, Lee S, Lee BI. J Biol Chem. 2012 Mar 30;287(14):10727-37. doi: 10.1074/jbc.M111.317594.