Jump to content

Magnetic topological insulator

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Nicovarn (talk | contribs) at 22:30, 17 December 2018. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Magnetic topological insulators are three dimensional magnetic materials with a non-trivial topological index protected by a symmetry other than time-reversal.[1][2][3] In contrast with a non-magnetic topological insulator, a magnetic topological insulator can have naturally gapped surface states as long as the quantizing symmetry is broken at the surface. These gapped surfaces exhibit a topologically protected half-quantized surface anomalous Hall conductivity () perpendicular to the surface. The sign of the half-quantized surface anomalous Hall conductivity depends on the specific surface termination.[4]

Theory

Axion coupling

The classification of a 3D crystalline topological insulator can be understood in terms of the axion coupling . A scalar quantity that is determined from the ground state wavefunction[5]

.

where is a shorthand notation for the Berry connection matrix

,

where is the cell-periodic part of the ground state Bloch wavefunction.

The topological nature of the axion coupling is evident if one considers gauge transformations. In this condensed matter setting a gauge transformation is a unitary transformation between states at the same point

.

Now a gauge tranformation will cause , . Since a gauge choice is arbitary, this property tells us that is only well defined in an interval of length e.g. .

The final ingredient we need to acquire a classification based on the axion coupling comes from observing how crystalline symmetries act on .

  • Fractional lattice translations , n-fold rotations : .
  • Time-reversal , inversion : .

The consequence is that if time-reversal or inversion are symmetries of the crystal we need to have and that can only be true if (trivial),(non-trivial) (note that and are identified) giving us a classification. Furthermore, we can combine inversion or time-reversal with other symmetries that do not affect to acquire new symmetries that quantize . For example mirror symmetry can always be expressed as giving rise to crystalline topological insulators,[6] while the first intrinsic magnetic topological insulator MnBiTe[7][8] has the quantizing symmetry .

References

  1. ^ Bao, Lihong; Wang, Weiyi; Meyer, Nicholas; Liu, Yanwen; Zhang, Cheng; Wang, Kai; Ai, Ping; Xiu, Faxian (2013). "Quantum corrections crossover and ferromagnetism in magnetic topological insulators". Scientific Reports. US: National Center for Biotechnology Information, U.S. National Library of Medicine. p. 2391. doi:10.1038/srep02391. PMC 3739003. PMID 23928713. Retrieved 2018-12-17.{{cite web}}: CS1 maint: PMC format (link)
  2. ^ "'Magnetic topological insulator' makes its own magnetic field". phys.org. Phys.org. Retrieved 2018-12-17.
  3. ^ Hasan, M. Z.; Kane, C. L. (2010-11-08). "Colloquium: Topological insulators". Reviews of Modern Physics. 82 (4): 3045–3067. doi:10.1103/RevModPhys.82.3045.
  4. ^ Varnava, Nicodemos; Vanderbilt, David (2018-12-13). "Surfaces of axion insulators". Physical Review B. 98 (24): 245117. doi:10.1103/PhysRevB.98.245117.
  5. ^ Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng (24 November 2008). "Topological field theory of time-reversal invariant insulators". Physical Review B. 78 (19): 195424. doi:10.1103/PhysRevB.78.195424.
  6. ^ Fu, Liang (8 March 2011). "Topological Crystalline Insulators". Physical Review Letters. 106 (10): 106802. doi:10.1103/PhysRevLett.106.106802.
  7. ^ Gong, Yan; Guo, Jingwen; Li, Jiaheng; Zhu, Kejing; Liao, Menghan; Liu, Xiaozhi; Zhang, Qinghua; Gu, Lin; Tang, Lin; Feng, Xiao; Zhang, Ding; Li, Wei; Song, Canli; Wang, Lili; Yu, Pu; Chen, Xi; Wang, Yayu; Yao, Hong; Duan, Wenhui; Xu, Yong; Zhang, Shou-Cheng; Ma, Xucun; Xue, Qi-Kun; He, Ke (20 September 2018). "Experimental realization of an intrinsic magnetic topological insulator". arXiv:1809.07926 [cond-mat].
  8. ^ Otrokov, Mikhail M.; Klimovskikh, Ilya I.; Bentmann, Hendrik; Zeugner, Alexander; Aliev, Ziya S.; Gass, Sebastian; Wolter, Anja U. B.; Koroleva, Alexandra V.; Estyunin, Dmitry; Shikin, Alexander M.; Blanco-Rey, María; Hoffmann, Martin; Vyazovskaya, Alexandra Yu; Eremeev, Sergey V.; Koroteev, Yury M.; Amiraslanov, Imamaddin R.; Babanly, Mahammad B.; Mamedov, Nazim T.; Abdullayev, Nadir A.; Zverev, Vladimir N.; Büchner, Bernd; Schwier, Eike F.; Kumar, Shiv; Kimura, Akio; Petaccia, Luca; Di Santo, Giovanni; Vidal, Raphael C.; Schatz, Sonja; Kißner, Katharina; Min, Chul-Hee; Moser, Simon K.; Peixoto, Thiago R. F.; Reinert, Friedrich; Ernst, Arthur; Echenique, Pedro M.; Isaeva, Anna; Chulkov, Evgueni V. (19 September 2018). "Prediction and observation of the first antiferromagnetic topological insulator". arXiv:1809.07389 [cond-mat].