Jump to content

User:Jreinstr/sandbox

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Jreinstr (talk | contribs) at 02:55, 11 February 2019. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Article to improve: Receiver function.

Some things to discuss:

- Method (explain equation and how it works)

- Applications

- Ramifications

Possible citations: [1][2][3] (potentially use figures from these papers)


Receiver function

A receiver function technique is a way to model the boundary layers and structure of the Earth by using the information from teleseismic earthquakes recorded at a three component seismograph.

A teleseismic P-wave will generate P to S conversions at boundaries, such as the Moho (crust-mantle boundary), beneath the seismograph. The difference in travel time between the generated S-wave and P-wave contains information about the distance to the boundary and if further reverberations are included more detailed structure can be resolved. This is done by deconvolution of the incoming vertical and longitudinal components of the seismogram which removes the common part of the components - namely, the source and travel path information. The resulting waveform is the receiver function.

Similarly, a teleseismic S-wave will generate an S to P conversion beneath the seismic station.

References

  • C. A. Langston: Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res. 84(B9), 4749–4762, 1979.
  • Charles J. Ammon, George E. Randall, and George Zandt: On the Nonuniqueness of Receiver Function Inversions, Journal of Geophysical Research 95(B10), 15303–15318, 1990.
  • Frederiksen, A. W., and M. G. Bostock: Modelling teleseismic waves in dipping anisotropic structures, Geophysical Journal International 141, 401–412, 2000.
  • Vinnik, L. P. (1977), Detection of waves converted from P to SV in the mantle, Phys. Earth Planet. Inter., 15(1), 39-45.
  1. ^ Wiemer, S.; Agostinetti, N. Piana; Kissling, E.; Bianchi, I.; Spada, M. (2013-08-01). "Combining controlled-source seismology and receiver function information to derive 3-D Moho topography for Italy". Geophysical Journal International. 194 (2): 1050–1068. doi:10.1093/gji/ggt148. ISSN 0956-540X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  2. ^ Yamauchi, Makiko; Hirahara, Kazuro; Shibutani, Takuo (2003-01-01). "High resolution receiver function imaging of the seismic velocity discontinuities in the crust and the uppermost mantle beneath southwest Japan". Earth, Planets and Space. 55: BF03352463. doi:10.1186/BF03352463. ISSN 1880-5981.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ Eagar, Kevin C.; Fouch, Matthew J.; James, David E. (2010-08-15). "Receiver function imaging of upper mantle complexity beneath the Pacific Northwest, United States". Earth and Planetary Science Letters. 297 (1): 141–153. doi:10.1016/j.epsl.2010.06.015. ISSN 0012-821X.