Jump to content

PSI (computational chemistry)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 23:20, 27 June 2019 (Add: pages, issue, volume. Formatted dashes. | You can use this bot yourself. Report bugs here.| Activated by User:Marianne Zimmerman). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Psi4
Developer(s)The Psi4 Project
Stable release
Psi4 1.3 / February 28, 2019; 5 years ago (2019-02-28)
Repository
Written inC++, Python
Operating systemLinux, Microsoft Windows, Mac OS X
TypeComputational chemistry
LicenseGPL
Websitehttp://www.psicode.org

Psi is an ab initio computational chemistry package originally written by the research group of Henry F. Schaefer, III (University of Georgia). Utilizing Psi, one can perform a calculation on a molecular system with various kinds of calculation method such as Hartree-Fock method, Post-Hartree–Fock methods and Density functional theory.[1][2] The program can compute energies, optimize molecular geometries, and compute vibrational frequencies.[1][2][3] The major part of the program is written in C++, while Python API is also available, which allows users to perform complex computations or automate tasks easily.[1][4][3]

Psi4 is the latest release of the program package - it is open source, released as free under the GPL through GitHub. Primary development of Psi4 is currently performed by the research groups of C. David Sherrill (Georgia Tech), T. Daniel Crawford (Virginia Tech), Francesco Evangelista (Emory University), and Henry F. Schaefer, III (University of Georgia), with substantial contributions by Justin Turney (University of Georgia), Andy Simmonett (NIH), and Rollin King (Bethel University).[1][4][3] Psi4 is available on Linux releases such as Fedora and Ubuntu.


Features

The basic capabilities of Psi are concentrated around the following methods[1] of quantum chemistry:

Several methods are available for computing excited electronic states, including configuration interaction singles (CIS), the random phase approximation (RPA), and equation-of-motion coupled cluster (EOM-CCSD).[1]

Psi4 has introduced the density-fitting approximation in many portions of the code, leading to faster computations and reduced I/O requirements.[1][4][3]

Psi4 is the preferred quantum chemistry backend for the OpenFermion project, which seeks to perform quantum chemistry computations on quantum computers.[5]

See also

References

  1. ^ a b c d e f g "Psi4: Open-Source Quantum Chemistry". The PSI4 Project. Retrieved 2017-07-06.
  2. ^ a b Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan (2016). "Open source molecular modeling". Journal of Molecular Graphics and Modelling. 69: 127–143. doi:10.1016/j.jmgm.2016.07.008. ISSN 1093-3263. PMC 5037051.
  3. ^ a b c d Parrish, Robert M.; Burns, Lori A.; Smith, Daniel G. A.; Simmonett, Andrew C.; DePrince, A. Eugene; Hohenstein, Edward G.; Bozkaya, Uğur; Sokolov, Alexander Yu.; Di Remigio, Roberto; Richard, Ryan M.; Gonthier, Jérôme F.; James, Andrew M.; McAlexander, Harley R.; Kumar, Ashutosh; Saitow, Masaaki; Wang, Xiao; Pritchard, Benjamin P.; Verma, Prakash; Schaefer, Henry F.; Patkowski, Konrad; King, Rollin A.; Valeev, Edward F.; Evangelista, Francesco A.; Turney, Justin M.; Crawford, T. Daniel; Sherrill, C. David (2017). "Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability". Journal of Chemical Theory and Computation. 13 (7): 3185–3197. doi:10.1021/acs.jctc.7b00174. ISSN 1549-9618.
  4. ^ a b c Turney, Justin M.; Simmonett, Andrew C.; Parrish, Robert M.; Hohenstein, Edward G.; Evangelista, Francesco A.; Fermann, Justin T.; Mintz, Benjamin J.; Burns, Lori A.; Wilke, Jeremiah J.; Abrams, Micah L.; Russ, Nicholas J.; Leininger, Matthew L.; Janssen, Curtis L.; Seidl, Edward T.; Allen, Wesley D.; Schaefer, Henry F.; King, Rollin A.; Valeev, Edward F.; Sherrill, C. David; Crawford, T. Daniel (2012). "Psi4: an open-sourceab initioelectronic structure program". Wiley Interdisciplinary Reviews: Computational Molecular Science. 2 (4): 556–565. doi:10.1002/wcms.93. ISSN 1759-0876.
  5. ^ Kahn, Jeremy (October 23, 2017). "Google Debuts Software to Open Up Quantum Computers for Chemists". Bloomberg Technology. Bloomberg LP. Retrieved 8 April 2018.