From Wikipedia, the free encyclopedia
This list of mathematical symbols by subject shows a selection of the most common symbols that are used in modern mathematical notation within formulas, grouped by mathematical topic. As it is virtually impossible to list all the symbols ever used in mathematics, only those symbols which occur often in mathematics or mathematics education are included. Many of the characters are standardized, for example in DIN 1302 General mathematical symbols or DIN EN ISO 80000-2 Quantities and units – Part 2: Mathematical signs for science and technology .
The following list is largely limited to non-alphanumeric characters. It is divided by areas of mathematics and grouped within sub-regions. Some symbols have a different meaning depending on the context and appear accordingly several times in the list. Further information on the symbols and their meaning can be found in the respective linked articles.
Guide
The following information is provided for each mathematical symbol:
Symbol
The symbol as it is represented by LaTeX . If there are several typographic variants, only one of the variants is shown.
Usage
An exemplary use of the symbol in a formula. Letters here stand as a placeholder for numbers, variables or complex expressions. Different possible applications are listed separately.
Interpretation
A short textual description of the meaning of the formula in the previous column.
Article
The Wikipedia article that discusses the meaning (semantics) of the symbol.
LaTeX
The LaTeX command that creates the icon. Characters from the ASCII character set can be used directly, with a few exceptions (pound sign #, backslash \, braces {}, and percent sign %). High-and low-position is indicated via the characters ^ and _ and is not explicitly specified.
HTML
The icon in HTML , if it is defined as a named mark. Non-named characters can be indicated in the form can &#xnnnn by specifying the Unicode code point of the next column. High-and low-position can be indicated via <sup></sup> and <sub></sub>.
Unicode
The code point of the corresponding Unicode character. Some characters are combining and require the entry of additional characters. For brackets, the code points of the opening and the closing forms are specified.
Set theory
Definition symbols
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
:
{\displaystyle \colon }
A
:
B
{\displaystyle A\colon B}
A
{\displaystyle A}
is defined by
B
{\displaystyle B}
Definition
\colon
U+003A
A
:
=
B
{\displaystyle A\colon =B}
A
{\displaystyle A}
is defined as equal to
B
{\displaystyle B}
A
:
⇔
B
{\displaystyle A\colon \Leftrightarrow B}
A
{\displaystyle A}
is defined as equivalent to
B
{\displaystyle B}
Set construction
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∅
{\displaystyle \varnothing }
Empty set
Empty set
\varnothing
,\emptyset
∅
U+2205
{
}
{\displaystyle \{~\}}
{
a
,
b
,
…
}
{\displaystyle \{a,b,\ldots \}}
Set consisting of the elements
a
,
b
{\displaystyle a,b}
and so on
Set (mathematics)
\{ \}
U+007B/D
∣
{\displaystyle \mid }
{
a
∣
T
(
a
)
}
{\displaystyle \{a\mid T(a)\}}
Set of elements
a
{\displaystyle a}
, that satisfy the condition
T
(
a
)
{\displaystyle T(a)}
\mid
U+007C
:
{\displaystyle \colon }
{
a
:
T
(
a
)
}
{\displaystyle \{a\,\colon T(a)\}}
\colon
U+003A
Set operations
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∪
{\displaystyle \cup }
A
∪
B
{\displaystyle A\cup B}
Union of the sets
A
{\displaystyle A}
and
B
{\displaystyle B}
Union (set theory)
\cup
∪
U+222A
∩
{\displaystyle \cap }
A
∩
B
{\displaystyle A\cap B}
Intersection of the sets
A
{\displaystyle A}
and
B
{\displaystyle B}
Intersection (set theory)
\cap
∩
U+2229
∖
{\displaystyle \setminus }
A
∖
B
{\displaystyle A\setminus B}
Difference of sets
A
{\displaystyle A}
and
B
{\displaystyle B}
Difference (set theory)
\setminus
U+2216
△
{\displaystyle \triangle }
A
△
B
{\displaystyle A\,\triangle \,B}
Symmetric difference of sets
A
{\displaystyle A}
and
B
{\displaystyle B}
Symmetric difference
\triangle
Δ
U+2206
×
{\displaystyle \times }
A
×
B
{\displaystyle A\times B}
Cartesian product of sets
A
{\displaystyle A}
and
B
{\displaystyle B}
Cartesian product
\times
×
U+2A2F
∪
˙
{\displaystyle {\dot {\cup }}}
A
∪
˙
B
{\displaystyle A\,{\dot {\cup }}\,B}
Disjoint union of sets
A
{\displaystyle A}
and
B
{\displaystyle B}
Disjoint union
\dot\cup
U+228D
⊔
{\displaystyle \sqcup }
A
⊔
B
{\displaystyle A\sqcup B}
Disjoint union of sets
A
{\displaystyle A}
and
B
{\displaystyle B}
\sqcup
U+2294
C
{\displaystyle {}^{\mathrm {C} }}
A
C
{\displaystyle A^{\mathrm {C} }}
Complement of the set
A
{\displaystyle A}
Complement (set theory)
\mathrm{C}
U+2201
¯
{\displaystyle {\overline {~~}}}
A
¯
{\displaystyle {\overline {A}}}
\overline
U+0305
P
{\displaystyle {\mathcal {P}}}
P
(
A
)
{\displaystyle {\mathcal {P}}(A)}
Power set of the set
A
{\displaystyle A}
Power set
\mathcal{P}
U+1D4AB
P
{\displaystyle {\mathfrak {P}}}
P
(
A
)
{\displaystyle {\mathfrak {P}}(A)}
\mathfrak{P}
U+1D513
℘
{\displaystyle \wp }
℘
(
A
)
{\displaystyle \wp (A)}
\wp
U+2118
⋀
{\displaystyle \bigwedge }
⋀
x
∈
A
{\displaystyle {\bigwedge }_{x\in A}}
This is the greatest lower bound, infimum, or meet of all elements operated on.
Infimum and supremum
\bigwedge
U+22C0
⋁
{\displaystyle \bigvee }
⋁
x
∈
A
{\displaystyle {\bigvee }_{x\in A}}
This is the least upper bound, supremum, or join of all elements operated on. [ 1]
\bigvee
U+22C1
Set relations
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
⊂
{\displaystyle \subset }
A
⊂
B
{\displaystyle A\subset B}
A
{\displaystyle A}
is a proper subset of
B
{\displaystyle B}
Subset
\subset
⊂
U+2282
⊊
{\displaystyle \subsetneq }
A
⊊
B
{\displaystyle A\subsetneq B}
\subsetneq
U+228A
⊆
{\displaystyle \subseteq }
A
⊆
B
{\displaystyle A\subseteq B}
A
{\displaystyle A}
is a subset of
B
{\displaystyle B}
\subseteq
⊆
U+2286
⊃
{\displaystyle \supset }
A
⊃
B
{\displaystyle A\supset B}
A
{\displaystyle A}
is a proper superset of
B
{\displaystyle B}
Superset
\supset
⊃
U+2283
⊋
{\displaystyle \supsetneq }
A
⊋
B
{\displaystyle A\supsetneq B}
\supsetneq
U+228B
⊇
{\displaystyle \supseteq }
A
⊇
B
{\displaystyle A\supseteq B}
A
{\displaystyle A}
is a superset of
B
{\displaystyle B}
\supseteq
⊇
U+2287
∈
{\displaystyle \in }
a
∈
A
{\displaystyle a\in A}
Element
a
{\displaystyle a}
is in the set
A
{\displaystyle A}
Element (mathematics)
\in
∈
U+2208
∋
{\displaystyle \ni }
A
∋
a
{\displaystyle A\ni a}
\ni
, \owns
∋
U+220B
∉
{\displaystyle \notin }
a
∉
A
{\displaystyle a\notin A}
Element
a
{\displaystyle a}
is not in the set
A
{\displaystyle A}
\notin
∉
U+2209
∌
{\displaystyle \not \ni }
A
∌
a
{\displaystyle A\not \ni a}
\not\ni
U+220C
Note: The symbols
⊂
{\displaystyle \subset }
and
⊃
{\displaystyle \supset }
are used inconsistently and often do not exclude the equality of the two quantities.
Number sets
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
N
{\displaystyle \mathbb {N} }
Natural numbers
Natural number
\mathbb{N}
U+2115
J
{\displaystyle \mathbb {J} }
Nonnegative ("whole") numbers
\mathbb{J}
U+1D541
W
{\displaystyle \mathbb {W} }
\mathbb{W}
U+1D54E
Z
{\displaystyle \mathbb {Z} }
Integers
Integer
\mathbb{Z}
U+2124
Q
{\displaystyle \mathbb {Q} }
Rational numbers
Rational number
\mathbb{Q}
U+211A
A
{\displaystyle \mathbb {A} }
Algebraic numbers
Algebraic number
\mathbb{A}
U+1D538
R
{\displaystyle \mathbb {R} }
Real numbers
Real number
\mathbb{R}
U+211D
C
{\displaystyle \mathbb {C} }
Complex numbers
Complex number
\mathbb{C}
U+2102
H
{\displaystyle \mathbb {H} }
Quaternions
Quaternion
\mathbb{H}
U+210D
Cardinality
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
|
|
{\displaystyle |~~|}
|
A
|
{\displaystyle |A|}
Cardinality of the set
A
{\displaystyle A}
Cardinality
\vert
U+007C
#
{\displaystyle \#}
#
A
{\displaystyle \#A}
\#
U+0023
c
{\displaystyle {\mathfrak {c}}}
Cardinality of the continuum
Cardinality of the continuum
\mathfrak{c}
U+1D520
ℵ
{\displaystyle \aleph }
ℵ
0
{\displaystyle \aleph _{0}}
,
ℵ
1
{\displaystyle \aleph _{1}}
, ...
Infinite cardinals
Aleph number
\aleph
U+2135
ℶ
{\displaystyle \beth }
ℶ
0
{\displaystyle \beth _{0}}
,
ℶ
1
{\displaystyle \beth _{1}}
, ...
Beth numbers
Beth number
\beth
U+2136
Arithmetic
Arithmetic operators
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
+
{\displaystyle +}
a
+
b
{\displaystyle a+b}
a
{\displaystyle a}
added to
b
{\displaystyle b}
Addition
+
U+002B
−
{\displaystyle -}
a
−
b
{\displaystyle a-b}
a
{\displaystyle a}
subtracted to
b
{\displaystyle b}
Subtraction
-
U+2212
⋅
{\displaystyle \cdot }
a
⋅
b
{\displaystyle a\cdot b}
a
{\displaystyle a}
multiplied by
b
{\displaystyle b}
Multiplication
\cdot
·
U+22C5
×
{\displaystyle \times }
a
×
b
{\displaystyle a\times b}
\times
×
U+2A2F
:
{\displaystyle :}
a
:
b
{\displaystyle a:b}
a
{\displaystyle a}
divided by
b
{\displaystyle b}
Division (mathematics)
:
U+003A
/
{\displaystyle /}
a
/
b
{\displaystyle a/b}
/
⁄
U+2215
÷
{\displaystyle \div }
a
÷
b
{\displaystyle a\div b}
\div
÷
U+00F7
{\displaystyle {\frac {~~}{~~}}}
a
b
{\displaystyle {\tfrac {a}{b}}}
\frac
U+2044
−
{\displaystyle -}
−
a
{\displaystyle -a}
Negative of the number
a
{\displaystyle a}
or the additive inverse of
a
{\displaystyle a}
Unary minus
-
−
U+2212
±
{\displaystyle \pm }
±
a
{\displaystyle \pm a}
Plus or minus
a
{\displaystyle a}
Plus or minus sign
\pm
±
U+00B1
∓
{\displaystyle \mp }
∓
a
{\displaystyle \mp a}
Minus or plus
a
{\displaystyle a}
\mp
U+2213
(
)
{\displaystyle (~)}
(
a
)
{\displaystyle (a)}
Term
a
{\displaystyle a}
is evaluated first
Bracket
( )
U+0028/9
[
]
{\displaystyle [~]}
[
a
]
{\displaystyle [a]}
[ ]
U+005B/D
Equality signs
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
=
{\displaystyle =}
a
=
b
{\displaystyle a=b}
a
{\displaystyle a}
equals
b
{\displaystyle b}
Equality (mathematics)
=
U+003D
≠
{\displaystyle \neq }
a
≠
b
{\displaystyle a\neq b}
a
{\displaystyle a}
does not equal
b
{\displaystyle b}
Inequality (mathematics)
\neq
≠
U+2260
≡
{\displaystyle \equiv }
a
≡
b
{\displaystyle a\equiv b}
a
{\displaystyle a}
is identical to
b
{\displaystyle b}
Identity (mathematics)
\equiv
≡
U+2261
≈
{\displaystyle \approx }
a
≈
b
{\displaystyle a\approx b}
a
{\displaystyle a}
is approximately equal to
b
{\displaystyle b}
Approximation
\approx
≈
U+2248
∼
{\displaystyle \sim }
a
∼
b
{\displaystyle a\sim b}
a
{\displaystyle a}
is similar to
b
{\displaystyle b}
Equivalence class
\sim
∼
U+223C
∝
{\displaystyle \propto }
a
∝
b
{\displaystyle a\propto b}
a
{\displaystyle a}
is proportional to
b
{\displaystyle b}
Proportionality (mathematics)
\propto
∝
U+221D
=
^
{\displaystyle {\widehat {=}}}
a
=
^
b
{\displaystyle a\,{\widehat {=}}\,b}
a
{\displaystyle a}
corresponds to
b
{\displaystyle b}
Correspondence (mathematics)
\widehat{=}
U+2259
Comparison
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
<
{\displaystyle <}
a
<
b
{\displaystyle a<b}
a
{\displaystyle a}
is less than
b
{\displaystyle b}
Comparison (mathematics)
<
<
U+003C
>
{\displaystyle >}
a
>
b
{\displaystyle a>b}
a
{\displaystyle a}
is greater than
b
{\displaystyle b}
>
>
U+003E
≤
{\displaystyle \leq }
a
≤
b
{\displaystyle a\leq b}
a
{\displaystyle a}
is less than or equal to
b
{\displaystyle b}
\le
, \leq
≤
U+2264
≦
{\displaystyle \leqq }
a
≦
b
{\displaystyle a\leqq b}
\leqq
U+2266
≥
{\displaystyle \geq }
a
≥
b
{\displaystyle a\geq b}
a
{\displaystyle a}
is greater than or equal to
b
{\displaystyle b}
\ge
, \geq
≥
U+2265
≧
{\displaystyle \geqq }
a
≧
b
{\displaystyle a\geqq b}
\geqq
U+2267
≪
{\displaystyle \ll }
a
≪
b
{\displaystyle a\ll b}
a
{\displaystyle a}
is much smaller than
b
{\displaystyle b}
\ll
U+226A
≫
{\displaystyle \gg }
a
≫
b
{\displaystyle a\gg b}
a
{\displaystyle a}
is much bigger than
b
{\displaystyle b}
\gg
U+226B
Divisibility
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∣
{\displaystyle \mid }
a
∣
b
{\displaystyle a\mid b}
a
{\displaystyle a}
divides
b
{\displaystyle b}
Divisibility
\mid
U+2223
∤
{\displaystyle \nmid }
a
∤
b
{\displaystyle a\nmid b}
a
{\displaystyle a}
does not divide
b
{\displaystyle b}
\nmid
U+2224
⊥
{\displaystyle \perp }
a
⊥
b
{\displaystyle a\perp b}
[citation needed ]
a
{\displaystyle a}
and
b
{\displaystyle b}
are relatively prime
Relatively prime
\perp
⊥
U+22A5
⊓
{\displaystyle \sqcap }
a
⊓
b
{\displaystyle a\sqcap b}
[citation needed ]
Greatest common divisor of
a
{\displaystyle a}
and
b
{\displaystyle b}
Greatest common divisor
\sqcap
U+2293
∧
{\displaystyle \wedge }
a
∧
b
{\displaystyle a\wedge b}
\wedge
U+2227
⊔
{\displaystyle \sqcup }
a
⊔
b
{\displaystyle a\sqcup b}
[citation needed ]
Least common multiple of
a
{\displaystyle a}
and
b
{\displaystyle b}
Least common multiple
\sqcup
U+2294
∨
{\displaystyle \vee }
a
∨
b
{\displaystyle a\vee b}
\vee
U+2228
≡
{\displaystyle \equiv }
a
≡
b
(
mod
m
)
{\displaystyle a\equiv b{\pmod {m}}}
a
{\displaystyle a}
and
b
{\displaystyle b}
are congruent modulo
m
{\displaystyle m}
Modular arithmetic
\equiv
≡
U+2261
Intervals
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
[
]
{\displaystyle [~~]}
[
a
,
b
]
{\displaystyle [a,b]}
Closed interval between
a
{\displaystyle a}
and
b
{\displaystyle b}
Interval (mathematics)
( )
[ ]
U+0028/9
U+005B/D
]
[
{\displaystyle ]~~[}
]
a
,
b
[
{\displaystyle ]a,b[}
Open interval between
a
{\displaystyle a}
and
b
{\displaystyle b}
(
)
{\displaystyle (~~)}
(
a
,
b
)
{\displaystyle (a,b)}
[
[
{\displaystyle [~~[}
[
a
,
b
[
{\displaystyle [a,b[}
Right-open interval between
a
{\displaystyle a}
and
b
{\displaystyle b}
[
)
{\displaystyle [~~)}
[
a
,
b
)
{\displaystyle [a,b)}
]
]
{\displaystyle ]~~]}
]
a
,
b
]
{\displaystyle ]a,b]}
Left-open interval between
a
{\displaystyle a}
and
b
{\displaystyle b}
(
]
{\displaystyle (~~]}
(
a
,
b
]
{\displaystyle (a,b]}
Elementary functions
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
|
|
{\displaystyle |~~|}
|
x
|
{\displaystyle |x|}
Absolute value of
x
{\displaystyle x}
Absolute value
\vert
U+007C
[
]
{\displaystyle \left[~~\right]}
[
x
]
{\displaystyle \left[x\right]}
Biggest whole number less than or equal to
x
{\displaystyle x}
Floor and ceiling functions
[ ]
U+005B/D
⌊
⌋
{\displaystyle \lfloor ~~\rfloor }
⌊
x
⌋
{\displaystyle \lfloor x\rfloor }
\lfloor \rfloor
⌊
⌋
U+230A/B
⌈
⌉
{\displaystyle \lceil ~~\rceil }
⌈
x
⌉
{\displaystyle \lceil x\rceil }
Smallest whole number greater than or equal to
x
{\displaystyle x}
\lceil \rceil
⌈
⌉
U+2308/9
{\displaystyle {\sqrt {\,}}}
x
{\displaystyle {\sqrt {x}}}
Square root of
x
{\displaystyle x}
Square root
\sqrt
√
U+221A
x
n
{\displaystyle {\sqrt[{n}]{x}}}
n
{\displaystyle n}
-th root of
x
{\displaystyle x}
nth root
%
{\displaystyle \%}
x
%
{\displaystyle x\,\%}
x
{\displaystyle x}
percent
Percent
\%
U+0025
Note: the power function is not represented by its own icon, but by the positioning of the exponent as a superscript .
Complex numbers
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
ℜ
{\displaystyle \Re }
ℜ
(
z
)
{\displaystyle \Re (z)}
Real part of complex number
z
{\displaystyle z}
Complex number
\Re
U+211C
ℑ
{\displaystyle \Im }
ℑ
(
z
)
{\displaystyle \Im (z)}
Imaginary part of complex number
z
{\displaystyle z}
\Im
U+2111
¯
{\displaystyle {\bar {~}}}
z
¯
{\displaystyle {\bar {z}}}
Complex conjugate of
z
{\displaystyle z}
Complex conjugate
\bar
U+0305
∗
{\displaystyle {}^{\ast }}
z
∗
{\displaystyle z^{\ast }}
\ast
∗
U+002A
|
|
{\displaystyle |~~|}
|
z
|
{\displaystyle |z|}
Absolute value of complex number
z
{\displaystyle z}
Absolute value
\vert
U+007C
arg
{\displaystyle \arg {}}
arg
(
z
)
{\displaystyle \arg(z)}
Argument of
z
{\displaystyle z}
Argument (complex analysis)
\arg
Remark: real and imaginary parts of a complex number are often also denoted by
Re
{\displaystyle \operatorname {Re} }
and
Im
{\displaystyle \operatorname {Im} }
.
Mathematical constants
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
π
{\displaystyle \pi }
Pi, or Archimedes' constant
Pi
\pi
{{pi}}
U+03C0
e or e
Euler's constant
e (mathematics)
e
or \rm{e}
{{mvar|e}}
or {{math|e}}
U+0065
φ
{\displaystyle \varphi }
Golden ratio
Golden ratio
\varphi
φ
U+03C6
i or i
Imaginary unit (square root of −1)
Imaginary unit
i
or \rm{i}
{{mvar|i}}
or {{math|i}}
U+0069
See also: mathematical constant for symbols of additional mathematical constants.
Calculus
Sequences and series
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∑
{\displaystyle \sum }
∑
i
=
1
n
,
∑
i
∈
I
{\displaystyle \sum _{i=1}^{n},\sum _{i\in I}}
Sum from
i
=
1
{\displaystyle i=1}
to
n
{\displaystyle n}
or over all elements
i
{\displaystyle i}
in set
I
{\displaystyle I}
Summation
\sum
∑
U+2211
∏
{\displaystyle \prod }
∏
i
=
1
n
,
∏
i
∈
I
{\displaystyle \prod _{i=1}^{n},\prod _{i\in I}}
Product from
i
=
1
{\displaystyle i=1}
to
n
{\displaystyle n}
or over all elements
i
{\displaystyle i}
in set
I
{\displaystyle I}
Product (mathematics)
\prod
∏
U+220F
∐
{\displaystyle \coprod }
∐
i
=
1
n
,
∐
i
∈
I
{\displaystyle \coprod _{i=1}^{n},\coprod _{i\in I}}
Coproduct from
i
=
1
{\displaystyle i=1}
to
n
{\displaystyle n}
or over all elements
i
{\displaystyle i}
in set
I
{\displaystyle I}
Coproduct
\coprod
U+2210
(
)
{\displaystyle (~~)}
(
a
n
)
{\displaystyle (a_{n})}
Sequence of elements
a
1
,
a
2
,
…
{\displaystyle a_{1},a_{2},\ldots }
Sequence
( )
U+0028/9
→
{\displaystyle \to }
a
n
→
a
{\displaystyle a_{n}\to a}
Sequence
(
a
n
)
{\displaystyle (a_{n})}
tends to limit
a
{\displaystyle a}
Limit of a sequence
\to
→
U+2192
∞
{\displaystyle \infty }
n
→
∞
{\displaystyle n\to \infty }
n
{\displaystyle n}
tends to infinity
Infinity
\infty
∞
U+221E
Functions
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
→
{\displaystyle \to }
f
:
A
→
B
{\displaystyle f\colon A\to B}
Function
f
{\displaystyle f}
maps from set
A
{\displaystyle A}
to set
B
{\displaystyle B}
Function (mathematics)
\to
→
U+2192
A
→
f
B
{\displaystyle A\,{\stackrel {f}{\to }}\,B}
↦
{\displaystyle \mapsto }
f
:
x
↦
y
{\displaystyle f\colon x\mapsto y}
Function
f
{\displaystyle f}
maps element
x
{\displaystyle x}
to element
y
{\displaystyle y}
\mapsto
U+21A6
x
↦
f
y
{\displaystyle x\,{\stackrel {f}{\mapsto }}\,y}
(
)
{\displaystyle (~~)}
f
(
x
)
{\displaystyle f(x)}
Image of element
x
{\displaystyle x}
under function
f
{\displaystyle f}
Image (mathematics)
( )
U+0028/9
f
(
X
)
{\displaystyle f(X)}
Image of set
X
{\displaystyle X}
under function
f
{\displaystyle f}
[
]
{\displaystyle [~~]}
f
[
X
]
{\displaystyle f[X]}
[ ]
U+005B/D
|
{\displaystyle \vert }
f
|
X
{\displaystyle f\vert _{X}}
Restriction of function
f
{\displaystyle f}
to set
X
{\displaystyle X}
Restriction (mathematics)
\vert
U+007C
⋅
{\displaystyle \cdot }
f
(
⋅
)
{\displaystyle f(\cdot )}
Placeholder for a variable as argument of function
f
{\displaystyle f}
Free variable
\cdot
U+22C5
−
1
{\displaystyle {}^{-1}}
f
−
1
{\displaystyle f^{-1}}
Inverse function of
f
{\displaystyle f}
Inverse function
-1
U+207B
∘
{\displaystyle \circ }
f
∘
g
{\displaystyle f\circ g}
Composition of functions
f
{\displaystyle f}
and
g
{\displaystyle g}
;
f
(
g
(
x
)
)
{\displaystyle f(g(x))}
Function composition
\circ
∘
U+2218
∗
{\displaystyle \ast }
f
∗
g
{\displaystyle f\ast g}
Convolution of functions
f
{\displaystyle f}
and
g
{\displaystyle g}
Convolution
\ast
∗
U+2217
^
{\displaystyle {\hat {~}}}
f
^
{\displaystyle {\hat {f}}}
Fourier transform of function
f
{\displaystyle f}
Fourier transform
\hat
U+0302
Limits
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
↑
{\displaystyle \uparrow }
lim
x
↑
a
f
(
x
)
{\displaystyle \lim _{x\uparrow a}f(x)}
Limit of function
f
{\displaystyle f}
as
x
{\displaystyle x}
approaches
a
{\displaystyle a}
from below
Limit of a function
\uparrow
↑
U+2191
↗
{\displaystyle \nearrow }
lim
x
↗
a
f
(
x
)
{\displaystyle \lim _{x\nearrow a}f(x)}
\nearrow
U+2197
→
{\displaystyle \to }
lim
x
→
a
f
(
x
)
{\displaystyle \lim _{x\to a}f(x)}
Limit of function
f
{\displaystyle f}
as
x
{\displaystyle x}
approaches
a
{\displaystyle a}
\to
→
U+2192
↘
{\displaystyle \searrow }
lim
x
↘
a
f
(
x
)
{\displaystyle \lim _{x\searrow a}f(x)}
Limit of function
f
{\displaystyle f}
as
x
{\displaystyle x}
approaches
a
{\displaystyle a}
from above
\searrow
U+2198
↓
{\displaystyle \downarrow }
lim
x
↓
a
f
(
x
)
{\displaystyle \lim _{x\downarrow a}f(x)}
\downarrow
↓
U+2193
+
{\displaystyle ^{+}}
lim
x
→
a
+
f
(
x
)
{\displaystyle \lim _{x\to a^{+}}f(x)}
Limit of a function
f
{\displaystyle f}
as
x
{\displaystyle x}
approaches
a
{\displaystyle a}
from the right
^+
⁺
U+207A
−
{\displaystyle ^{-}}
lim
x
→
a
−
f
(
x
)
{\displaystyle \lim _{x\to a^{-}}f(x)}
Limit of a function
f
{\displaystyle f}
as
x
{\displaystyle x}
approaches
a
{\displaystyle a}
from the left
^-
⁻
U+207B
Asymptotic behaviour
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∼
{\displaystyle \sim }
f
∼
g
{\displaystyle f\sim g}
Function
f
{\displaystyle f}
is asymptotically equal to function
g
{\displaystyle g}
Asymptotic analysis
\sim
∼
U+223C
o
{\displaystyle o}
f
∈
o
(
g
)
{\displaystyle f\in o(g)}
Function
f
{\displaystyle f}
grows slower than
g
{\displaystyle g}
Big O notation
o
U+006F
O
{\displaystyle {\mathcal {O}}}
f
∈
O
(
g
)
{\displaystyle f\in {\mathcal {O}}(g)}
Function
f
{\displaystyle f}
grows not substantially faster than
g
{\displaystyle g}
\mathcal{O}
U+1D4AA
Θ
{\displaystyle \Theta }
f
∈
Θ
(
g
)
{\displaystyle f\in \Theta (g)}
Function
f
{\displaystyle f}
grows as fast as
g
{\displaystyle g}
\Theta
Θ
U+0398
Ω
{\displaystyle \Omega }
f
∈
Ω
(
g
)
{\displaystyle f\in \Omega (g)}
Function
f
{\displaystyle f}
grows not substantially slower than
g
{\displaystyle g}
\Omega
Ω
U+03A9
ω
{\displaystyle \omega }
f
∈
ω
(
g
)
{\displaystyle f\in \omega (g)}
Function
f
{\displaystyle f}
grows faster than
g
{\displaystyle g}
\omega
ω
U+03C9
Differential calculus
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
′
{\displaystyle {}'}
f
′
,
f
″
{\displaystyle f',f''}
First or second derivative of function
f
{\displaystyle f}
Lagrange's notation
\prime
′
U+2032,U+2033
V
{\displaystyle ^{V}}
f
I
V
,
f
V
,
f
V
I
{\displaystyle f^{IV},f^{V},f^{VI}}
Alternative notation for fourth, fifth, or sixth derivative of function
f
{\displaystyle f}
^{V}
<sup>Ⅳ</sup>
(
)
{\displaystyle {}^{(~)}}
f
(
4
)
,
f
(
5
)
,
f
(
n
)
{\displaystyle f^{(4)},f^{(5)},f^{(n)}}
Alternative notation for fourth, fifth, or
n
{\displaystyle n}
-th derivative of function
f
{\displaystyle f}
( )
<sup>( )</sup>
U+0028/9
⋅
{\displaystyle \cdot }
f
˙
,
f
¨
{\displaystyle {\dot {f}},{\ddot {f}}}
First or second derivative of function
f
{\displaystyle f}
with respect to time (in physics)
Newton's notation
\dot
, \ddot
U+0307
d
{\displaystyle d}
d
x
{\displaystyle dx}
An infinitesimally small change in
x
{\displaystyle x}
Leibniz's notation
d
d
U+0064
d
f
d
x
{\displaystyle {\frac {df}{dx}}}
Derivative of function
f
{\displaystyle f}
with respect to variable
x
{\displaystyle x}
d
d
x
f
{\displaystyle {\frac {d}{dx}}f}
d
2
d
x
2
f
{\displaystyle {\frac {d^{2}}{dx^{2}}}f}
Second derivative of function
f
{\displaystyle f}
with respect to variable
x
{\displaystyle x}
d
f
{\displaystyle df}
Total differential of function
f
{\displaystyle f}
∂
{\displaystyle \partial }
∂
f
∂
x
{\displaystyle {\frac {\partial \!f}{\partial x}}}
Partial derivative of function
f
{\displaystyle f}
with respect to variable
x
{\displaystyle x}
Partial derivative
\partial
∂
U+2202
Integral calculus
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∫
{\displaystyle \int }
∫
a
b
{\displaystyle \int _{a}^{b}}
,
∫
G
{\displaystyle \displaystyle \int _{G}}
Definite integral between
a
{\displaystyle a}
and
b
{\displaystyle b}
or over set
G
{\displaystyle G}
Integral
\int
∫
U+222B
∮
{\displaystyle \oint }
∮
γ
{\displaystyle \oint _{\gamma }}
Curve integral along curve
γ
{\displaystyle \gamma }
Curve integral
\oint
U+222E
∬
{\displaystyle \iint }
∬
F
{\displaystyle \iint _{\mathcal {F}}}
Surface integral over surface
F
{\displaystyle {\mathcal {F}}}
Surface integral
\iint
U+222C
∭
{\displaystyle \iiint }
∭
V
{\displaystyle \iiint _{V}}
Volume integral over volume
V
{\displaystyle V}
Volume integral
\iiint
U+222D
Vector calculus
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∇
{\displaystyle \nabla }
∇
f
{\displaystyle \nabla f}
Gradient of function
f
{\displaystyle f}
Gradient
\nabla
∇
U+2207
∇
⋅
F
{\displaystyle \nabla \cdot F}
Divergence of vector field
F
{\displaystyle F}
Divergence
∇
×
F
{\displaystyle \nabla \times F}
Curl of vector field
F
{\displaystyle F}
Curl (mathematics)
Δ
{\displaystyle \Delta }
Δ
f
{\displaystyle \Delta f}
Laplace operator of function
f
{\displaystyle f}
Laplace operator
\Delta
Δ
U+2206
◻
{\displaystyle \square }
◻
f
{\displaystyle \square f}
D'Alembert operator of function
f
{\displaystyle f}
D'Alembert operator
\square
U+25A1
Topology
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∂
{\displaystyle \partial }
∂
U
{\displaystyle \partial U}
Boundary of set
U
{\displaystyle U}
Boundary (topology)
\partial
∂
U+2202
∘
{\displaystyle {}^{\circ }}
U
∘
{\displaystyle U^{\circ }}
Interior of set
U
{\displaystyle U}
Interior (topology)
\circ
°
U+02DA
¯
{\displaystyle {\overline {~~}}}
U
¯
{\displaystyle {\overline {U}}}
Closure of set
U
{\displaystyle U}
Closure (topology)
\overline
U+0305
˙
{\displaystyle {\dot {~}}}
U
˙
(
x
)
{\displaystyle {\dot {U}}(x)}
Punctured neighbourhood
U
{\displaystyle U}
of point
x
{\displaystyle x}
Punctured neighbourhood
\dot
— U+0307
Functional analysis
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
′
{\displaystyle {}'}
V
′
{\displaystyle V'}
Topological dual space of topological vector space
V
{\displaystyle V}
Dual space
\prime
′
U+2032
″
{\displaystyle {}''}
V
″
{\displaystyle V''}
Bidual space of normed vector space
V
{\displaystyle V}
^
{\displaystyle {\hat {~}}}
X
^
{\displaystyle {\hat {X}}}
Completion of metric space
X
{\displaystyle X}
Complete metric space
\hat
U+0302
↪
{\displaystyle \hookrightarrow }
X
↪
Y
{\displaystyle X\hookrightarrow Y}
Embedding of topological vector space
X
{\displaystyle X}
into
Y
{\displaystyle Y}
Embedding
\hookrightarrow
U+21AA
Linear algebra and geometry
Elementary geometry
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
[
]
{\displaystyle [~~]}
[
A
B
]
{\displaystyle [AB]}
Line segment between points
A
{\displaystyle A}
and
B
{\displaystyle B}
Line segment
[ ]
U+005B/D
|
|
{\displaystyle |~~|}
|
A
B
|
{\displaystyle |AB|}
Length of line segment between points
A
{\displaystyle A}
and
B
{\displaystyle B}
\vert
U+007C
¯
{\displaystyle {\overline {~~}}}
A
B
¯
{\displaystyle {\overline {AB}}}
\overline
U+0305
→
{\displaystyle {\overrightarrow {~~}}}
A
B
→
{\displaystyle {\overrightarrow {AB}}}
Vector between points
A
{\displaystyle A}
and
B
{\displaystyle B}
Euclidean vector and Affine space
\vec
U+20D7
∠
{\displaystyle \angle }
∠
A
B
C
{\displaystyle \angle ABC}
Angle between line segments
B
A
{\displaystyle BA}
and
B
C
{\displaystyle BC}
Angle
\angle
∠
U+2220
△
{\displaystyle \triangle }
△
A
B
C
{\displaystyle \triangle ABC}
Triangle with vertices
A
{\displaystyle A}
,
B
{\displaystyle B}
and
C
{\displaystyle C}
Triangle
\triangle
U+25B3
◻
{\displaystyle \square }
◻
A
B
C
D
{\displaystyle \square {\mathit {ABCD}}}
Quadrilateral with vertices
A
{\displaystyle A}
,
B
{\displaystyle B}
,
C
{\displaystyle C}
and
D
{\displaystyle D}
Quadrilateral
\square
U+25A1
∥
{\displaystyle \parallel }
g
∥
h
{\displaystyle g\parallel h}
Lines
g
{\displaystyle g}
and
h
{\displaystyle h}
are parallel
Parallel (geometry)
\parallel
U+2225
∦
{\displaystyle \nparallel }
g
∦
h
{\displaystyle g\nparallel h}
Lines
g
{\displaystyle g}
and
h
{\displaystyle h}
are not parallel
\nparallel
U+2226
⊥
{\displaystyle \perp }
g
⊥
h
{\displaystyle g\perp h}
Lines
g
{\displaystyle g}
and
h
{\displaystyle h}
are orthogonal
Orthogonality
\perp
⊥
U+27C2
Vectors and matrices
Symbol
Usage
Article
LaTeX
(
v
1
,
…
,
v
n
)
{\displaystyle {\begin{pmatrix}v_{1},\ldots ,v_{n}\end{pmatrix}}}
Row vector comprising elements
v
1
{\displaystyle v_{1}}
through
v
n
{\displaystyle v_{n}}
Vector (mathematics and physics)
\begin{pmatrix}
...
\end{pmatrix}
or\left(
\begin{array}{...}
...
\end{array}
\right)
(
v
1
⋮
v
m
)
{\displaystyle {\begin{pmatrix}v_{1}\\\vdots \\v_{m}\end{pmatrix}}}
Column vector comprising elements
v
1
{\displaystyle v_{1}}
through
v
m
{\displaystyle v_{m}}
(
a
11
…
a
1
n
⋮
⋱
⋮
a
m
1
…
a
m
n
)
{\displaystyle {\begin{pmatrix}a_{11}&\!\ldots \!&a_{1n}\\\vdots &\!\ddots \!&\vdots \\a_{m1}&\!\ldots \!&a_{mn}\end{pmatrix}}}
Matrix comprising elements
a
11
{\displaystyle a_{11}}
through
a
m
n
{\displaystyle a_{mn}}
Matrix (mathematics)
Vector calculus
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
⋅
{\displaystyle \cdot }
v
⋅
w
{\displaystyle v\cdot w}
Dot product of vectors
v
{\displaystyle v}
and
w
{\displaystyle w}
Dot product
\cdot
·
U+22C5
(
)
{\displaystyle (~~)}
(
v
,
w
)
{\displaystyle (v,w)}
( )
U+0028/9
⟨
⟩
{\displaystyle \langle ~~\rangle }
⟨
v
,
w
⟩
{\displaystyle \langle v,w\rangle }
⟨
v
|
w
⟩
{\displaystyle \langle v\,|\,w\rangle }
\langle \rangle
⟨
⟩
U+27E8/9
×
{\displaystyle \times }
v
×
w
{\displaystyle v\times w}
Cross product of vectors
v
{\displaystyle v}
and
w
{\displaystyle w}
Cross product
\times
×
U+2A2F
[
]
{\displaystyle [~~]}
[
v
,
w
]
{\displaystyle [v,w]}
[ ]
U+005B/D
(
)
{\displaystyle (~~)}
(
u
,
v
,
w
)
{\displaystyle (u,v,w)}
Triple product of vectors
u
{\displaystyle u}
,
v
{\displaystyle v}
and
w
{\displaystyle w}
Triple product
( )
U+0028/9
⊗
{\displaystyle \otimes }
v
⊗
w
{\displaystyle v\otimes w}
Dyadic product of vectors
v
{\displaystyle v}
and
w
{\displaystyle w}
Dyadic product
\otimes
⊗
U+2297
∧
{\displaystyle \wedge }
v
∧
w
{\displaystyle v\wedge w}
Wedge product of vectors
v
{\displaystyle v}
and
w
{\displaystyle w}
Wedge product
\wedge
U+2227
|
|
{\displaystyle |~~|}
|
v
|
{\displaystyle |v|}
Length of vector
v
{\displaystyle v}
Euclidean norm
\vert
U+007C
‖
‖
{\displaystyle \|~~\|}
‖
v
‖
{\displaystyle \|v\|}
Norm of vector
v
{\displaystyle v}
Norm (mathematics)
\Vert
, \|
U+2016
^
{\displaystyle {\hat {~}}}
v
^
{\displaystyle {\hat {v}}}
Normalized vector of vector
v
{\displaystyle v}
Unit vector
\hat{}
U+0302
Matrix calculus
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
⋅
{\displaystyle \cdot }
A
⋅
B
{\displaystyle A\cdot B}
Product of matrices
A
{\displaystyle A}
and
B
{\displaystyle B}
Matrix multiplication
\cdot
·
U+22C5
∘
{\displaystyle \circ }
A
∘
B
{\displaystyle A\circ B}
Hadamard product of matrices
A
{\displaystyle A}
and
B
{\displaystyle B}
Hadamard product (matrices)
\circ
U+2218
⊘
{\displaystyle \oslash }
A
⊘
B
{\displaystyle A\oslash B}
Hadamard division of matrices
A
{\displaystyle A}
and
B
{\displaystyle B}
Hadamard product (matrices)
\oslash
U+2298
⊗
{\displaystyle \otimes }
A
⊗
B
{\displaystyle A\otimes B}
Kronecker product of matrices
A
{\displaystyle A}
and
B
{\displaystyle B}
Kronecker product
\otimes
⊗
U+2297
T
{\displaystyle {}^{\mathrm {T} }}
A
T
{\displaystyle A^{\mathrm {T} }}
Transposed matrix of matrix
A
{\displaystyle A}
Transposed matrix
T
U+0054
H
{\displaystyle {}^{\mathrm {H} }}
A
H
{\displaystyle A^{\mathrm {H} }}
Conjugate transpose of matrix
A
{\displaystyle A}
Conjugate transpose
H
U+0048
∗
{\displaystyle {}^{\ast }}
A
∗
{\displaystyle A^{\ast }}
\ast
∗
U+002A
†
{\displaystyle {}^{\dagger }}
A
†
{\displaystyle A^{\dagger }}
\dagger
†
U+2020
−
1
{\displaystyle {}^{-1}}
A
−
1
{\displaystyle A^{-1}}
Inverse matrix of matrix
A
{\displaystyle A}
Inverse matrix
-1
U+207B
+
{\displaystyle {}^{+}}
A
+
{\displaystyle A^{+}}
Moore–Penrose pseudoinverse of matrix
A
{\displaystyle A}
Moore–Penrose pseudoinverse
+
U+002B
|
|
{\displaystyle |~~|}
|
A
|
{\displaystyle |A|}
Determinant of Matrix
A
{\displaystyle A}
Determinant
\vert
U+007C
‖
‖
{\displaystyle \|~~\|}
‖
A
‖
{\displaystyle \|A\|}
Norm of matrix
A
{\displaystyle A}
Matrix norm
\Vert
, \|
U+2016
Vector spaces
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
+
{\displaystyle +}
V
+
W
{\displaystyle V+W}
Sum of vector spaces
V
{\displaystyle V}
and
W
{\displaystyle W}
Direct sum of modules
+
U+002B
⊕
{\displaystyle \oplus }
V
⊕
W
{\displaystyle V\oplus W}
Direct sum of vector spaces
V
{\displaystyle V}
and
W
{\displaystyle W}
\oplus
⊕
U+2295
×
{\displaystyle \times }
V
×
W
{\displaystyle V\times W}
Direct product of vector spaces
V
{\displaystyle V}
and
W
{\displaystyle W}
Direct product
\times
×
U+2A2F
⊗
{\displaystyle \otimes }
V
⊗
W
{\displaystyle V\otimes W}
Tensor product of vector spaces
V
{\displaystyle V}
and
W
{\displaystyle W}
Tensor product
\otimes
⊗
U+2297
/
{\displaystyle /}
V
/
U
{\displaystyle V\,/\,U}
Quotient space of vector space
V
{\displaystyle V}
by subspace
U
{\displaystyle U}
Quotient space (linear algebra)
/
⁄
U+002F
⊥
{\displaystyle {}^{\perp }}
U
⊥
{\displaystyle U^{\perp }}
Orthogonal complement of subspace
U
{\displaystyle U}
Orthogonal complement
\perp
⊥
U+27C2
∗
{\displaystyle {}^{\ast }}
V
∗
{\displaystyle V^{\ast }}
Dual space of vector space
V
{\displaystyle V}
Dual space
\ast
∗
U+002A
0
{\displaystyle {}^{0}}
X
0
{\displaystyle X^{0}}
Annihilator space of the set of vectors
X
{\displaystyle X}
0
U+0030
⟨
⟩
{\displaystyle \langle ~~\rangle }
⟨
X
⟩
{\displaystyle \langle X\rangle }
Linear hull of the set of vectors
X
{\displaystyle X}
Linear hull
\langle \rangle
⟨
⟩
U+27E8/9
Algebra
Relations
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∘
{\displaystyle \circ }
R
∘
S
{\displaystyle R\circ S}
Composition of relations
R
{\displaystyle R}
and
S
{\displaystyle S}
Composition of relations
\circ
U+2218
a
∘
b
{\displaystyle a\circ b}
Operation of elements
a
{\displaystyle a}
and
b
{\displaystyle b}
(general)
Operation (mathematics)
∙
{\displaystyle \bullet }
a
∙
b
{\displaystyle a\bullet b}
\bullet
•
U+2219
∗
{\displaystyle \ast }
a
∗
b
{\displaystyle a\ast b}
\ast
∗
U+2217
≤
{\displaystyle \leq }
a
≤
b
{\displaystyle a\leq b}
Order relation between elements
a
{\displaystyle a}
and
b
{\displaystyle b}
Order relation
\leq
≤
U+2264
≺
{\displaystyle \prec }
a
≺
b
{\displaystyle a\prec b}
Element
a
{\displaystyle a}
is a predecessor of element
b
{\displaystyle b}
Successor ordinal
\prec
U+227A
≻
{\displaystyle \succ }
a
≻
b
{\displaystyle a\succ b}
Element
a
{\displaystyle a}
is a successor of element
b
{\displaystyle b}
\succ
U+227B
∼
{\displaystyle \sim }
a
∼
b
{\displaystyle a\sim b}
Equivalence relation between elements
a
{\displaystyle a}
and
b
{\displaystyle b}
Equivalence relation
\sim
∼
U+223C
[
]
{\displaystyle [~~]}
[
a
]
{\displaystyle [a]}
Equivalence class of element
a
{\displaystyle a}
Equivalence class
[ ]
U+005B/D
/
{\displaystyle /}
M
/
∼
{\displaystyle M/\sim }
Quotient set of set
M
{\displaystyle M}
by equivalence relation
∼
{\displaystyle \sim }
Quotient set
/
⁄
U+002F
−
1
{\displaystyle {}^{-1}}
R
−
1
{\displaystyle R^{-1}}
Inverse relation of relation
R
{\displaystyle R}
Inverse relation
-1
U+207B
+
{\displaystyle {}^{+}}
R
+
{\displaystyle R^{+}}
Transitive closure of relation
R
{\displaystyle R}
Transitive closure
+
U+002B
∗
{\displaystyle {}^{\ast }}
R
∗
{\displaystyle R^{\ast }}
Reflexive closure of relation
R
{\displaystyle R}
Reflexive closure
\ast
∗
U+002A
Group theory
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
≃
{\displaystyle \simeq }
G
≃
H
{\displaystyle G\simeq H}
Groups
G
{\displaystyle G}
and
H
{\displaystyle H}
are isomorphic
Group isomorphism
\simeq
U+2243
≅
{\displaystyle \cong }
G
≅
H
{\displaystyle G\cong H}
\cong
≅
U+2245
×
{\displaystyle \times }
G
×
H
{\displaystyle G\times H}
Direct product of groups
G
{\displaystyle G}
and
H
{\displaystyle H}
Direct product
\times
×
U+2A2F
⋊
{\displaystyle \rtimes }
G
⋊
H
{\displaystyle G\rtimes H}
Semidirect product of groups
G
{\displaystyle G}
and
H
{\displaystyle H}
Semidirect product
\rtimes
U+22CA
≀
{\displaystyle \wr }
G
≀
H
{\displaystyle G\,\wr \,H}
Wreath product of groups
G
{\displaystyle G}
and
H
{\displaystyle H}
Wreath product
\wr
U+2240
≤
{\displaystyle \leq }
U
≤
G
{\displaystyle U\leq G}
U
{\displaystyle U}
is a subgroup of group
G
{\displaystyle G}
Subgroup
\leq
≤
U+2264
<
{\displaystyle <}
U
<
G
{\displaystyle U<G}
U
{\displaystyle U}
is a proper subgroup of group
G
{\displaystyle G}
\lt
<
U+003C
⊲
{\displaystyle \vartriangleleft }
N
⊲
G
{\displaystyle N\vartriangleleft G}
N
{\displaystyle N}
is a normal subgroup of group
G
{\displaystyle G}
Normal subgroup
\vartriangleleft
U+22B2
/
{\displaystyle /}
G
/
N
{\displaystyle G/N}
Quotient group of group
G
{\displaystyle G}
by normal subgroup
N
{\displaystyle N}
Quotient group
/
⁄
U+002F
:
{\displaystyle \colon }
(
G
:
U
)
{\displaystyle (G\colon U)}
Index of subgroup
U
{\displaystyle U}
in group
G
{\displaystyle G}
Index of a subgroup
\colon
U+003A
⟨
⟩
{\displaystyle \langle ~~\rangle }
⟨
E
⟩
{\displaystyle \langle E\rangle }
Subgroup generated by set
E
{\displaystyle E}
Generating set of a group
\langle \rangle
⟨
⟩
U+27E8/9
[
]
{\displaystyle [~~]}
[
g
,
h
]
{\displaystyle [g,h]}
Commutator of elements
g
{\displaystyle g}
and
h
{\displaystyle h}
Commutator
[ ]
U+005B/D
Field theory
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
/
{\displaystyle /}
L
/
K
{\displaystyle L/K}
Extension of field
L
{\displaystyle L}
over field
K
{\displaystyle K}
Field extension
/
⁄
U+002F
∣
{\displaystyle \mid }
L
∣
K
{\displaystyle L\mid K}
\mid
U+007C
:
{\displaystyle \colon }
L
:
K
{\displaystyle L\colon K}
\colon
U+003A
[
L
:
K
]
{\displaystyle [L\colon K]}
Degree of field extension
L
{\displaystyle L}
over
K
{\displaystyle K}
Degree of a field extension
¯
{\displaystyle {\overline {~~}}}
K
¯
{\displaystyle {\overline {K}}}
Algebraic closure of field
K
{\displaystyle K}
Algebraic closure
\overline
U+0305
(
)
{\displaystyle ()}
K
(
α
)
{\displaystyle K(\alpha )}
Extension of a field
K
{\displaystyle K}
by adding an algebraic element
α
{\displaystyle \alpha }
Field extension , Algebraic number field
( )
U+0028/9
K
{\displaystyle \mathbb {K} }
Field of real or complex numbers
Field (mathematics)
\mathbb{K}
U+1D542
F
{\displaystyle \mathbb {F} }
Finite field
Finite field
\mathbb{F}
U+1D53D
Ring theory
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∗
{\displaystyle {}^{\ast }}
R
∗
{\displaystyle R^{\ast }}
Group of units of ring
R
{\displaystyle R}
Group of units
\ast
∗
U+2217
×
{\displaystyle {}^{\times }}
R
×
{\displaystyle R^{\times }}
\times
×
U+2A2F
⊲
{\displaystyle \vartriangleleft }
I
⊲
R
{\displaystyle I\vartriangleleft R}
I
{\displaystyle I}
is an ideal of ring
R
{\displaystyle R}
(Uncommon, needs to be defined before the first use)
Ideal (ring theory)
\vartriangleleft
U+22B2
/
{\displaystyle /}
R
/
I
{\displaystyle R/I}
Quotient ring of ring
R
{\displaystyle R}
by ideal
I
{\displaystyle I}
Quotient ring
/
⁄
U+002F
[
]
{\displaystyle [~~]}
R
[
X
]
{\displaystyle R[X]}
Polynomial ring over ring
R
{\displaystyle R}
with variable
X
{\displaystyle X}
Polynomial ring
[ ]
U+005B/D
[
[
]
]
{\displaystyle [[~~]]}
R
[
[
X
]
]
,
R
(
(
X
)
)
{\displaystyle R[[X]],R((X))}
Ring of formal power series and ring of formal Laurent series
Formal power series
[[ ]]
U+005B/D
Combinatorics
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
!
{\displaystyle !}
n
!
{\displaystyle n!}
Number of permutations of
n
{\displaystyle n}
elements
Factorial
!
U+0021
!
n
{\displaystyle !n}
Number of derangements of
n
{\displaystyle n}
elements (permutations without fixed points)
Derangement
n
!
!
{\displaystyle n!!}
Number of involutions without fixed points (
n
{\displaystyle n}
odd)
Double factorial
(
)
{\displaystyle {\tbinom {~}{~}}}
(
n
k
)
{\displaystyle {\tbinom {n}{k}}}
Number of
k
{\displaystyle k}
-combinations of
n
{\displaystyle n}
elements without repetition
Combination
\binom
U+0028/9
(
n
k
1
,
…
,
k
r
)
{\displaystyle {\tbinom {n}{k_{1},\ldots ,k_{r}}}}
Number of permutations of
n
{\displaystyle n}
elements of which
k
1
,
…
,
k
r
{\displaystyle k_{1},\ldots ,k_{r}}
are identical
Multinomial coefficient
(
(
)
)
{\displaystyle \left(\!{\tbinom {~}{~}}\!\right)}
(
(
n
k
)
)
{\displaystyle \left(\!{\tbinom {n}{k}}\!\right)}
Number of
k
{\displaystyle k}
-combinations of
n
{\displaystyle n}
elements with repetition
Multiset
(( ))
U+0028/9
¯
{\displaystyle {\overline {~~}}}
n
m
¯
{\displaystyle n^{\overline {m}}}
Rising factorial from
n
{\displaystyle n}
with
m
{\displaystyle m}
factors
Pochhammer symbol
\overline
U+0305
n
m
_
{\displaystyle n^{\underline {m}}}
Falling factorial from
n
{\displaystyle n}
with
m
{\displaystyle m}
factors
\underline
U+0332
#
{\displaystyle \#}
n
#
{\displaystyle n\#}
Product of all primes up to
n
{\displaystyle n}
Primorial
\#
U+0023
Stochastics
Probability theory
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
P
{\displaystyle P}
P
(
A
)
{\displaystyle P(A)}
Probability of event
A
{\displaystyle A}
Probability measure
P
U+2119
∣
{\displaystyle \mid }
P
(
A
∣
B
)
{\displaystyle P(A\mid B)}
Probability of event
A
{\displaystyle A}
given event
B
{\displaystyle B}
Conditional probability
\mid
U+007C
E
{\displaystyle E}
E
(
X
)
{\displaystyle E(X)}
Expected value of the random variable
X
{\displaystyle X}
Expected value
E
U+1D53C
V
{\displaystyle V}
V
(
X
)
{\displaystyle V(X)}
Variance of the random variable
X
{\displaystyle X}
Variance
V
U+1D54D
σ
{\displaystyle \sigma }
σ
(
X
)
{\displaystyle \sigma (X)}
Standard deviation of the random variable
X
{\displaystyle X}
Standard deviation
\sigma
σ
U+03C3
σ
(
X
,
Y
)
{\displaystyle \sigma (X,Y)}
Covariance of random variables
X
{\displaystyle X}
and
Y
{\displaystyle Y}
Covariance
ρ
{\displaystyle \rho }
ρ
(
X
,
Y
)
{\displaystyle \rho (X,Y)}
Correlation of random variables
X
{\displaystyle X}
and
Y
{\displaystyle Y}
Correlation
\rho
ρ
U+03C1
∼
{\displaystyle \sim }
X
∼
F
{\displaystyle X\sim F}
Random variable
X
{\displaystyle X}
has distribution
F
{\displaystyle F}
Probability distribution
\sim
∼
U+223C
≈
{\displaystyle \approx }
X
≈
F
{\displaystyle X\approx F}
Random variable
X
{\displaystyle X}
has distribution
F
{\displaystyle F}
approximately
\approx
≈
U+2248
⊥
{\displaystyle {\displaystyle \perp }}
A
⊥
B
{\displaystyle A\perp B}
Event
A
{\displaystyle A}
is independent from event
B
{\displaystyle B}
Independence (probability theory)
\perp
⊥
U+22A5
Remark: for operators there are several notational variants; instead of round brackets also square brackets are used
Statistics
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
¯
{\displaystyle {\bar {~}}}
x
¯
{\displaystyle {\bar {x}}}
Average of the values
x
1
,
…
,
x
n
{\displaystyle x_{1},\ldots ,x_{n}}
Average
\bar
U+0305
⟨
⟩
{\displaystyle \langle ~~\rangle }
⟨
X
⟩
{\displaystyle \langle X\rangle }
Average over all values in the set
X
{\displaystyle X}
(in physics)
\langle \rangle
⟨
⟩
U+27E8/9
^
{\displaystyle {\hat {~}}}
p
^
{\displaystyle {\hat {p}}}
Estimator for parameter
p
{\displaystyle p}
Estimator
\hat
U+0302
Logic
Operators
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∧
{\displaystyle \land }
A
∧
B
{\displaystyle A\land B}
Proposition
A
{\displaystyle A}
and proposition
B
{\displaystyle B}
Logical conjunction
\land
∧
U+2227
∨
{\displaystyle \lor }
A
∨
B
{\displaystyle A\lor B}
Proposition
A
{\displaystyle A}
or proposition
B
{\displaystyle B}
(or both)
Logical disjunction
\lor
∨
U+2228
⇔
{\displaystyle \Leftrightarrow }
A
⇔
B
{\displaystyle A\Leftrightarrow B}
Proposition
A
{\displaystyle A}
follows from proposition
B
{\displaystyle B}
and vice versa
Logical equivalence
\Leftrightarrow
⇔
U+21D4
↔
{\displaystyle \leftrightarrow }
A
↔
B
{\displaystyle A\leftrightarrow B}
\leftrightarrow
↔
U+2194
⇒
{\displaystyle \Rightarrow }
A
⇒
B
{\displaystyle A\Rightarrow B}
From proposition
A
{\displaystyle A}
follows proposition
B
{\displaystyle B}
Logical consequence
\Rightarrow
⇒
U+21D2
→
{\displaystyle \rightarrow }
A
→
B
{\displaystyle A\rightarrow B}
\rightarrow
→
U+2192
⊕
{\displaystyle \oplus }
A
⊕
B
{\displaystyle A\oplus B}
Either proposition
A
{\displaystyle A}
or proposition
B
{\displaystyle B}
Exclusive or
\oplus
⊕
U+2295
⊻
{\displaystyle \veebar }
A
⊻
B
{\displaystyle A\,\veebar \,B}
\veebar
U+22BB
∨
˙
{\displaystyle {\dot {\lor }}}
A
∨
˙
B
{\displaystyle A\,{\dot {\lor }}\,B}
\dot\lor
U+2A52
¬
{\displaystyle \lnot }
¬
A
{\displaystyle \lnot A}
Not proposition
A
{\displaystyle A}
Logical negation
\lnot
¬
U+00AC
¯
{\displaystyle {\overline {~~}}}
A
¯
{\displaystyle {\overline {A}}}
\bar
U+0305
←
{\displaystyle \leftarrow }
A
←
B
{\displaystyle A\leftarrow B}
If B then A, or not B without A. It is not to be confused with the assignment operator in computer science .
Converse implication
\leftarrow
←
U+2190
Quantifiers
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
∀
{\displaystyle \forall }
∀
x
{\displaystyle \forall \,x}
For all elements
x
{\displaystyle x}
Universal quantification
\forall
∀
U+2200
⋀
{\displaystyle \bigwedge }
⋀
x
{\displaystyle \bigwedge _{x}}
\bigwedge
U+22C0
∃
{\displaystyle \exists }
∃
x
{\displaystyle \exists \,x}
At least one element
x
{\displaystyle x}
exists
Existential quantification
\exists
∃
U+2203
⋁
{\displaystyle \bigvee }
⋁
x
{\displaystyle \bigvee _{x}}
\bigvee
U+22C1
∃
!
{\displaystyle \exists !}
∃
!
x
{\displaystyle \exists !\,x}
Exactly one element
x
{\displaystyle x}
exists
Uniqueness quantification
\exists!
∃!
U+2203
⋁
⋅
{\displaystyle \bigvee ^{\centerdot }}
⋁
x
⋅
{\displaystyle \bigvee _{x}^{\centerdot }}
\dot\bigvee
U+2A52
∄
{\displaystyle \nexists }
∄
x
{\displaystyle \nexists \,x}
No element
x
{\displaystyle x}
exists
Existential quantification
\nexists
U+2204
Deduction symbols
Symbol
Usage
Interpretation
Article
LaTeX
HTML
Unicode
⊢
{\displaystyle \vdash }
A
⊢
B
{\displaystyle A\vdash B}
Proposition
B
{\displaystyle B}
can be syntactically derived from proposition
A
{\displaystyle A}
Propositional calculus , Turnstile
\vdash
U+22A2
⊨
{\displaystyle \models }
A
⊨
B
{\displaystyle A\models B}
Proposition
B
{\displaystyle B}
follows semantically from proposition
A
{\displaystyle A}
Inference
\models
U+22A8
⊨
A
{\displaystyle \models A}
Proposition
A
{\displaystyle A}
is universally true
Tautology (logic)
⊤
{\displaystyle \top }
A
⊤
{\displaystyle A\top }
\top
U+22A4
⊥
{\displaystyle \bot }
A
⊥
{\displaystyle A\bot }
Proposition
A
{\displaystyle A}
is contradictory
Contradiction
\bot
⊥
U+22A5
∴
{\displaystyle \therefore }
A
∴
B
{\displaystyle A\therefore B}
Proposition
A
{\displaystyle A}
is true, therefore proposition
B
{\displaystyle B}
is true
Deductive reasoning
\therefore
U+2234
∵
{\displaystyle \because }
A
∵
B
{\displaystyle A\because B}
Proposition
A
{\displaystyle A}
is true, because
B
{\displaystyle B}
is true
\because
U+2235
◼
{\displaystyle \blacksquare }
End of proof
Q.E.D.
\blacksquare
U+220E
◻
{\displaystyle \Box }
\Box
U+25A1
See also
References
^ Davey, B.A.; Priestley, H.A. (2002). Introduction to lattices and order (2 ed.). Cambridge: Cambridge University Press. pp. xii + 298. ISBN 0-521-78451-4 .
Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel (2011), Mathematik (in German) (2. ed.), Spektrum Akademischer Verlag, pp. 1483ff., ISBN 3-827-42347-3
Wolfgang Hackbusch (2010), Taschenbuch der Mathematik, Band 1 (in German) (3. ed.), Springer, pp. 1275ff., ISBN 3-835-10123-4
Deutsches Institut für Normung : DIN 1302: Allgemeine mathematische Zeichen und Begriffe , Beuth-Verlag, 1999.
Deutsches Institut für Normung : DIN 1303: Vektoren, Matrizen, Tensoren; Zeichen und Begriffe , Beuth-Verlag, 1987.
International Standards Organisation : DIN EN ISO 80000-2: Größen und Einheiten – Teil 2: Mathematische Zeichen für Naturwissenschaft und Technik , 2013.
Note: This article is a translation of the German Wikipedia article de:Liste mathematischer Symbole .
External links