Jump to content

E-function

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by CLCStudent (talk | contribs) at 01:17, 9 August 2019 (Reverted 1 edit by 71.221.136.112 (talk) to last revision by Pauli133 (TW)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, E-functions are a type of power series that satisfy particular arithmetic conditions on the coefficients. They are of interest in transcendental number theory, and are more special than G-functions.

Definition

A function f(x) is called of type E, or an E-function,[1] if the power series

satisfies the following three conditions:

,

where the left hand side represents the maximum of the absolute values of all the algebraic conjugates of cn;

  • For all ε > 0 there is a sequence of natural numbers q0, q1, q2,... such that qnck is an algebraic integer in K for k=0, 1, 2,..., n, and n = 0, 1, 2,... and for which
.

The second condition implies that f is an entire function of x.

Uses

E-functions were first studied by Siegel in 1929.[2] He found a method to show that the values taken by certain E-functions were algebraically independent.This was a result which established the algebraic independence of classes of numbers rather than just linear independence.[3] Since then these functions have proved somewhat useful in number theory and in particular they have application in transcendence proofs and differential equations.[4]

The Siegel–Shidlovsky theorem

Perhaps the main result connected to E-functions is the Siegel–Shidlovsky theorem (also known as the Shidlovsky and Shidlovskii theorem), named after Carl Ludwig Siegel and Andrei Borisovich Shidlovskii.

Suppose that we are given n E-functions, E1(x),...,En(x), that satisfy a system of homogeneous linear differential equations

where the fij are rational functions of x, and the coefficients of each E and f are elements of an algebraic number field K. Then the theorem states that if E1(x),...,En(x) are algebraically independent over K(x), then for any non-zero algebraic number α that is not a pole of any of the fij the numbers E1(α),...,En(α) are algebraically independent.

Examples

  1. Any polynomial with algebraic coefficients is a simple example of an E-function.
  2. The exponential function is an E-function, in its case cn=1 for all of the n.
  3. If λ is an algebraic number then the Bessel function Jλ is an E-function.
  4. The sum or product of two E-functions is an E-function. In particular E-functions form a ring.
  5. If a is an algebraic number and f(x) is an E-function then f(ax) will be an E-function.
  6. If f(x) is an E-function then the derivative and integral of f are also E-functions.

References

  1. ^ Carl Ludwig Siegel, Transcendental Numbers, p.33, Princeton University Press, 1949.
  2. ^ C.L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. 1, 1929.
  3. ^ Alan Baker, Transcendental Number Theory, pp.109-112, Cambridge University Press, 1975.
  4. ^ Serge Lang, Introduction to Transcendental Numbers, pp.76-77, Addison-Wesley Publishing Company, 1966.
  • Weisstein, Eric W. "E-Function". MathWorld.