Jump to content

TANK-binding kinase 1

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Boghog (talk | contribs) at 03:10, 19 August 2019 (consistent citation formatting; removed further reading citations not specific to this gene). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

TBK1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesTBK1, Tbk1, 1200008B05Rik, AI462036, AW048562, NAK, T2K, FTDALS4, TANK binding kinase 1, IIAE8
External IDsOMIM: 604834; MGI: 1929658; HomoloGene: 22742; GeneCards: TBK1; OMA:TBK1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_013254

NM_019786

RefSeq (protein)

NP_037386

NP_062760

Location (UCSC)Chr 12: 64.45 – 64.5 MbChr 10: 121.38 – 121.42 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

TBK1 (TANK-binding kinase 1) is an enzyme with kinase activity. Specifically, it is a serine / threonine protein kinase.[5] It is encoded by the TBK1 gene in humans.[6] This kinase is mainly known for its role in innate immunity antiviral response. However, TKB1 also regulates cell proliferation, apoptosis, autophagy, and anti-tumor immunity.[5] Insufficient regulation of TBK1 activity leads to autoimmune, neurodegenerative diseases or tumorogenesis.[7][8]

Structure and regulation of activity

TBK1 is a non-canonical IKK kinase that phosphorylates the nuclear factor kB (NFkB). It shares sequence homology with canonical IKK.[5]

N-terminus of protein contains kinase domain (region 9-309) and ubiquiting-like domain (region 310-385). The C-terminus is formed by two coil-coiled structures (region 407-713) that provide surface for homodimerization (dimerization domain).[5][6]

The autophosphorylation of serine 172, which require homodimerization and ubiquitinylation of lysines 30 and 401, is necessary for kinase activity.[9]

Involvement in signaling pathways

TBK1 is involved in many signaling pathways and forms a node between them. For this reason, regulation of its involvement in individual signaling pathways is necessary. This is provided by adaptor proteins that interact with dimerization domain of TBK1 to determine its location and access to substrates. Binding to TANK leads to localization to the perinuclear region, fosforylation of substrate with is required for subsequent production of type I interferons (INFI). In contrast, binding to NAP1 and SINTBAD leads to localization in the cytoplasm and involvement in autophagy. Another adaptor protein that determines the location of TBK1 is TAPE. TAPE targets TBK1 to endolysosomes.[5]

The main interest about TBK1 is due its role in innate immunity, especially in antiviral response. TBK1 is redundant with IKK, but TBK1 seems to be more important. After triggering antiviral signaling through PRR (pattern recognition receptors), TBK1 is activated. Subsequently, it phosphorylates the transcription factors IRF3, which is translocated to the nucleus, and promote production of INF-I.[7]

As non-canonical IKK, TBK1 is also involved in the non-canonical NFkB pathway. It phosphorylates p100/NFkB2, which is subsequently processed in the proteasome and released as a p52 subunit. This subunit subsequently dimerizes with RelB and mediate gene expression.[10]

In canonical NFkB pathway the NF-kappa-B (NFKB) complex of proteins is inhibited by I-kappa-B (IKB) proteins, which inactivate NFKB by trapping it in the cytoplasm. Phosphorylation of serine residues on the IKB proteins by IKB kinases marks them for destruction via the ubiquitination pathway, thereby allowing activation and nuclear translocation of the NFKB complex. The protein encoded by this gene is similar to IKB kinases and can mediate NFkB activation in response to certain growth factors.[6]

TBK1 promote autophagy involved in patogen clearence. Furthermore, TBK1 is also involved in the regulation of cell proliferation, apoptosis and glucose metabolism.[10]

Interactions

TANK-binding kinase 1 has been shown to interact with:

Transcriptional factors activated upon TBK1 activation include IRF3, IRF7 [16] and ZEB1. [17]

Clinical significance

Deregulation of TBK1 activity and mutations in this protein are associated with many diseases. Due role of TBK1 in cell survival, deregulation of its activity is associated with tumorogenesis.[8] They are also many autoimmune (for example, rheumatoid arthritis, sympathetic lupus) and neurodegenerative (e.g., amylotrophic lateral sclerosis or infantile herpex simplex virus encephalitis) diseases associated with mutation or deregulation of TBK1.[9][7]

The loss of TBK1 cause embryonic lethality in mouse.[16]

Inhibition of IκB kinase (IKK) and IKK-related kinases, IKBKE (IKKε) and TANK-binding kinase 1 (TBK1), has been investigated as a therapeutic option for the treatment of inflammatory diseases and cancer.[18]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000183735Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000020115Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c d e Helgason E, Phung QT, Dueber EC (April 2013). "Recent insights into the complexity of Tank-binding kinase 1 signaling networks: the emerging role of cellular localization in the activation and substrate specificity of TBK1". FEBS Letters. 587 (8): 1230–7. doi:10.1016/j.febslet.2013.01.059. PMID 23395801.
  6. ^ a b c "Entrez Gene: TBK1 TANK-binding kinase 1".
  7. ^ a b c Louis C, Burns C, Wicks I (2018-03-06). "TANK-Binding Kinase 1-Dependent Responses in Health and Autoimmunity". Frontiers in Immunology. 9: 434. doi:10.3389/fimmu.2018.00434. PMC 5845716. PMID 29559975.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ a b Cruz VH, Brekken RA (March 2018). "Assessment of TANK-binding kinase 1 as a therapeutic target in cancer". Journal of Cell Communication and Signaling. 12 (1): 83–90. doi:10.1007/s12079-017-0438-y. PMC 5842199. PMID 29218456.
  9. ^ a b Oakes JA, Davies MC, Collins MO (February 2017). "TBK1: a new player in ALS linking autophagy and neuroinflammation". Molecular Brain. 10 (1): 5. doi:10.1186/s13041-017-0287-x. PMC 5288885. PMID 28148298.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  10. ^ a b Durand JK, Zhang Q, Baldwin AS (September 2018). "Roles for the IKK-Related Kinases TBK1 and IKKε in Cancer". Cells. 7 (9): 139. doi:10.3390/cells7090139. PMC 6162516. PMID 30223576.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  11. ^ Chou MM, Hanafusa H (March 1995). "A novel ligand for SH3 domains. The Nck adaptor protein binds to a serine/threonine kinase via an SH3 domain". The Journal of Biological Chemistry. 270 (13): 7359–64. doi:10.1074/jbc.270.13.7359. PMID 7706279.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  12. ^ Pomerantz JL, Baltimore D (December 1999). "NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase". The EMBO Journal. 18 (23): 6694–704. doi:10.1093/emboj/18.23.6694. PMC 1171732. PMID 10581243.
  13. ^ a b Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, et al. (February 2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nature Cell Biology. 6 (2): 97–105. doi:10.1038/ncb1086. PMID 14743216.
  14. ^ Bonnard M, Mirtsos C, Suzuki S, Graham K, Huang J, Ng M, et al. (September 2000). "Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription". The EMBO Journal. 19 (18): 4976–85. doi:10.1093/emboj/19.18.4976. PMC 314216. PMID 10990461.
  15. ^ "TANK-binding kinase 1-binding protein 1". UniProt. Retrieved 30 Jun 2018.
  16. ^ a b Ikeda F, Hecker CM, Rozenknop A, Nordmeier RD, Rogov V, Hofmann K, et al. (July 2007). "Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes". The EMBO Journal. 26 (14): 3451–62. doi:10.1038/sj.emboj.7601773. PMC 1933404. PMID 17599067.
  17. ^ Liu W, Huang YJ, Liu C, Yang YY, Liu H, Cui JG, et al. (April 2014). "Inhibition of TBK1 attenuates radiation-induced epithelial-mesenchymal transition of A549 human lung cancer cells via activation of GSK-3β and repression of ZEB1". Laboratory Investigation; A Journal of Technical Methods and Pathology. 94 (4): 362–70. doi:10.1038/labinvest.2013.153. PMID 24468793.
  18. ^ Llona-Minguez S, Baiget J, Mackay SP (July 2013). "Small-molecule inhibitors of IκB kinase (IKK) and IKK-related kinases". Pharmaceutical Patent Analyst. 2 (4): 481–98. doi:10.4155/ppa.13.31. PMID 24237125.

Further reading