Integer sequence
In mathematics , the Euler numbers are a sequence En of integers (sequence A122045 in the OEIS ) defined by the Taylor series expansion
1
cosh
t
=
2
e
t
+
e
−
t
=
∑
n
=
0
∞
E
n
n
!
⋅
t
n
{\displaystyle {\frac {1}{\cosh t}}={\frac {2}{e^{t}+e^{-t}}}=\sum _{n=0}^{\infty }{\frac {E_{n}}{n!}}\cdot t^{n}}
,
where cosh t is the hyperbolic cosine . The Euler numbers are related to a special value of the Euler polynomials , namely:
E
n
=
2
n
E
n
(
1
2
)
.
{\displaystyle E_{n}=2^{n}E_{n}({\tfrac {1}{2}}).}
The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. They also occur in combinatorics , specifically when counting the number of alternating permutations of a set with an even number of elements.
Examples
The odd-indexed Euler numbers are all zero . The even-indexed ones (sequence A028296 in the OEIS ) have alternating signs. Some values are:
E 0
=
1
E 2
=
−1
E 4
=
5
E 6
=
−61
E 8
=
1385
E 10
=
−50521
E 12
=
2702 765
E 14
=
−199360 981
E 16
=
19391 512 145
E 18
=
−2404 879 675 441
Some authors re-index the sequence in order to omit the odd-numbered Euler numbers with value zero, or change all signs to positive. This article adheres to the convention adopted above.
In terms of Stirling numbers of the second kind
Following two formulas express the Euler numbers in terms of Stirling numbers of the second kind [ 1]
[ 2]
E
r
=
2
2
r
−
1
∑
k
=
1
r
(
−
1
)
k
S
(
r
,
k
)
k
+
1
(
3
(
1
4
)
(
k
)
−
(
3
4
)
(
k
)
)
{\displaystyle E_{r}=2^{2r-1}\sum _{k=1}^{r}{\frac {(-1)^{k}S(r,k)}{k+1}}\left(3\left({\frac {1}{4}}\right)^{(k)}-\left({\frac {3}{4}}\right)^{(k)}\right)}
E
2
l
=
−
4
2
l
∑
k
=
1
2
l
(
−
1
)
k
⋅
S
(
2
l
,
k
)
k
+
1
⋅
(
3
4
)
(
k
)
{\displaystyle E_{2l}=-4^{2l}\sum _{k=1}^{2l}(-1)^{k}\cdot {\frac {S(2l,k)}{k+1}}\cdot \left({\frac {3}{4}}\right)^{(k)}}
where
S
(
r
,
k
)
{\displaystyle S(r,k)}
denotes the Stirling numbers of the second kind , and
x
(
n
)
=
(
x
)
(
x
+
1
)
⋯
(
x
+
n
−
1
)
{\displaystyle x^{(n)}=(x)(x+1)\cdots (x+n-1)}
denotes the rising factorial .
As an iterated sum
An explicit formula for Euler numbers is:[ 3]
E
2
n
=
i
∑
k
=
1
2
n
+
1
∑
j
=
0
k
(
k
j
)
(
−
1
)
j
(
k
−
2
j
)
2
n
+
1
2
k
i
k
k
{\displaystyle E_{2n}=i\sum _{k=1}^{2n+1}\sum _{j=0}^{k}{\binom {k}{j}}{\frac {(-1)^{j}(k-2j)^{2n+1}}{2^{k}i^{k}k}}}
where i denotes the imaginary unit with i 2 = −1 .
As a sum over partitions
The Euler number E 2n can be expressed as a sum over the even partitions of 2n ,[ 4]
E
2
n
=
(
2
n
)
!
∑
0
≤
k
1
,
…
,
k
n
≤
n
(
K
k
1
,
…
,
k
n
)
δ
n
,
∑
m
k
m
(
−
1
2
!
)
k
1
(
−
1
4
!
)
k
2
⋯
(
−
1
(
2
n
)
!
)
k
n
,
{\displaystyle E_{2n}=(2n)!\sum _{0\leq k_{1},\ldots ,k_{n}\leq n}\left({\begin{array}{c}K\\k_{1},\ldots ,k_{n}\end{array}}\right)\delta _{n,\sum mk_{m}}\left(-{\frac {1}{2!}}\right)^{k_{1}}\left(-{\frac {1}{4!}}\right)^{k_{2}}\cdots \left(-{\frac {1}{(2n)!}}\right)^{k_{n}},}
as well as a sum over the odd partitions of 2n − 1 ,[ 5]
E
2
n
=
(
−
1
)
n
−
1
(
2
n
−
1
)
!
∑
0
≤
k
1
,
…
,
k
n
≤
2
n
−
1
(
K
k
1
,
…
,
k
n
)
δ
2
n
−
1
,
∑
(
2
m
−
1
)
k
m
(
−
1
1
!
)
k
1
(
1
3
!
)
k
2
⋯
(
(
−
1
)
n
(
2
n
−
1
)
!
)
k
n
,
{\displaystyle E_{2n}=(-1)^{n-1}(2n-1)!\sum _{0\leq k_{1},\ldots ,k_{n}\leq 2n-1}\left({\begin{array}{c}K\\k_{1},\ldots ,k_{n}\end{array}}\right)\delta _{2n-1,\sum (2m-1)k_{m}}\left(-{\frac {1}{1!}}\right)^{k_{1}}\left({\frac {1}{3!}}\right)^{k_{2}}\cdots \left({\frac {(-1)^{n}}{(2n-1)!}}\right)^{k_{n}},}
where in both cases K = k 1 + ··· + kn and
(
K
k
1
,
…
,
k
n
)
≡
K
!
k
1
!
⋯
k
n
!
{\displaystyle \left({\begin{array}{c}K\\k_{1},\ldots ,k_{n}\end{array}}\right)\equiv {\frac {K!}{k_{1}!\cdots k_{n}!}}}
is a multinomial coefficient . The Kronecker deltas in the above formulas restrict the sums over the k s to 2k 1 + 4k 2 + ··· + 2nkn = 2n and to k 1 + 3k 2 + ··· + (2n − 1)kn = 2n − 1 , respectively.
As an example,
E
10
=
10
!
(
−
1
10
!
+
2
2
!
8
!
+
2
4
!
6
!
−
3
2
!
2
6
!
−
3
2
!
4
!
2
+
4
2
!
3
4
!
−
1
2
!
5
)
=
9
!
(
−
1
9
!
+
3
1
!
2
7
!
+
6
1
!
3
!
5
!
+
1
3
!
3
−
5
1
!
4
5
!
−
10
1
!
3
3
!
2
+
7
1
!
6
3
!
−
1
1
!
9
)
=
−
50
521.
{\displaystyle {\begin{aligned}E_{10}&=10!\left(-{\frac {1}{10!}}+{\frac {2}{2!\,8!}}+{\frac {2}{4!\,6!}}-{\frac {3}{2!^{2}\,6!}}-{\frac {3}{2!\,4!^{2}}}+{\frac {4}{2!^{3}\,4!}}-{\frac {1}{2!^{5}}}\right)\\&=9!\left(-{\frac {1}{9!}}+{\frac {3}{1!^{2}\,7!}}+{\frac {6}{1!\,3!\,5!}}+{\frac {1}{3!^{3}}}-{\frac {5}{1!^{4}\,5!}}-{\frac {10}{1!^{3}\,3!^{2}}}+{\frac {7}{1!^{6}\,3!}}-{\frac {1}{1!^{9}}}\right)\\&=-50\,521.\end{aligned}}}
As a determinant
E 2n is given by the determinant
E
2
n
=
(
−
1
)
n
(
2
n
)
!
|
1
2
!
1
1
4
!
1
2
!
1
⋮
⋱
⋱
1
(
2
n
−
2
)
!
1
(
2
n
−
4
)
!
1
2
!
1
1
(
2
n
)
!
1
(
2
n
−
2
)
!
⋯
1
4
!
1
2
!
|
.
{\displaystyle {\begin{aligned}E_{2n}&=(-1)^{n}(2n)!~{\begin{vmatrix}{\frac {1}{2!}}&1&~&~&~\\{\frac {1}{4!}}&{\frac {1}{2!}}&1&~&~\\\vdots &~&\ddots ~~&\ddots ~~&~\\{\frac {1}{(2n-2)!}}&{\frac {1}{(2n-4)!}}&~&{\frac {1}{2!}}&1\\{\frac {1}{(2n)!}}&{\frac {1}{(2n-2)!}}&\cdots &{\frac {1}{4!}}&{\frac {1}{2!}}\end{vmatrix}}.\end{aligned}}}
As an integral
E 2n is also given by the following integrals:
(
−
1
)
n
E
2
n
=
∫
0
∞
t
2
n
cosh
π
t
2
d
t
=
(
2
π
)
2
n
+
1
∫
0
∞
x
2
n
cosh
x
d
x
=
(
2
π
)
2
n
∫
0
1
log
2
n
(
tan
π
t
4
)
d
t
=
(
2
π
)
2
n
+
1
∫
0
π
/
2
log
2
n
(
tan
x
2
)
d
x
=
2
2
n
+
3
π
2
n
+
2
∫
0
π
/
2
x
log
2
n
(
tan
x
)
d
x
=
(
2
π
)
2
n
+
2
∫
0
π
x
2
log
2
n
(
tan
x
2
)
d
x
.
{\displaystyle {\begin{aligned}(-1)^{n}E_{2n}&=\int _{0}^{\infty }{\frac {t^{2n}}{\cosh {\frac {\pi t}{2}}}}\;dt=\left({\dfrac {2}{\pi }}\right)^{2n+1}\int _{0}^{\infty }{\frac {x^{2n}}{\cosh {x}}}\;dx\\\\&=\left({\dfrac {2}{\pi }}\right)^{2n}\int _{0}^{1}\log ^{2n}\left(\tan {\frac {\pi t}{4}}\right)dt=\left({\dfrac {2}{\pi }}\right)^{2n+1}\int _{0}^{\pi /2}\log ^{2n}\left(\tan {\frac {x}{2}}\right)dx\\\\&={\dfrac {2^{2n+3}}{\pi ^{2n+2}}}\int _{0}^{\pi /2}x\log ^{2n}\left(\tan x\right)\,dx=\left({\dfrac {2}{\pi }}\right)^{2n+2}\int _{0}^{\pi }{\frac {x}{2}}\log ^{2n}\left(\tan {\frac {x}{2}}\right)\,dx.\end{aligned}}}
Asymptotic approximation
The Euler numbers grow quite rapidly for large indices as
they have the following lower bound
|
E
2
n
|
>
8
n
π
(
4
n
π
e
)
2
n
.
{\displaystyle |E_{2n}|>8{\sqrt {\frac {n}{\pi }}}\left({\frac {4n}{\pi e}}\right)^{2n}.}
Euler zigzag numbers
The Taylor series of sec x + tan x is
∑
n
=
0
∞
A
n
n
!
x
n
,
{\displaystyle \sum _{n=0}^{\infty }{\frac {A_{n}}{n!}}x^{n},}
where An is the Euler zigzag numbers , beginning with
1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981, 1903757312, 19391512145, 209865342976, 2404879675441, 29088885112832, ... (sequence A000111 in the OEIS )
For all even n ,
A
n
=
(
−
1
)
n
2
E
n
,
{\displaystyle A_{n}=(-1)^{\frac {n}{2}}E_{n},}
where En is the Euler number; and for all odd n ,
A
n
=
(
−
1
)
n
−
1
2
2
n
+
1
(
2
n
+
1
−
1
)
B
n
+
1
n
+
1
,
{\displaystyle A_{n}=(-1)^{\frac {n-1}{2}}{\frac {2^{n+1}\left(2^{n+1}-1\right)B_{n+1}}{n+1}},}
where Bn is the Bernoulli number .
For every n ,
A
n
−
1
(
n
−
1
)
!
sin
(
n
π
2
)
+
∑
m
=
0
n
−
1
A
m
m
!
(
n
−
m
−
1
)
!
sin
(
m
π
2
)
=
1
(
n
−
1
)
!
.
{\displaystyle {\frac {A_{n-1}}{(n-1)!}}\sin {\left({\frac {n\pi }{2}}\right)}+\sum _{m=0}^{n-1}{\frac {A_{m}}{m!(n-m-1)!}}\sin {\left({\frac {m\pi }{2}}\right)}={\frac {1}{(n-1)!}}.}
[citation needed ]
See also
References
External links
Possessing a specific set of other numbers
Expressible via specific sums