Jump to content

Artificial intelligence in industry

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 184.54.75.233 (talk) at 13:49, 2 April 2020 (Unfortunately someone removed these references from the text! These sentences are directly used by the references that someone else removed it! and i put them back into the right place.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Industrial artificial intelligence (Industrial AI) is a systematic discipline to enable engineers to systematically develop and deploy AI algorithms with repeating and consistent successes[1]. The traditional definition of industrial AI usually refers to the application of artificial intelligence to industry.[2] and in a more elaborate fashion, Successful implementation of Industrial AI will improve decision making and provide enhanced insight to business users - whether that’s reducing asset downtime, improving manufacturing efficiency, automating production, predicting demand, optimizing inventory levels or enhancing risk management. A unified architecture for industrial AI includes four major categories, namely 1) Data Technology 2) Platform Technology, 3) Analytic Technology, and 4) Operation Technology[3]. Incorporation of these core functionalities guarantees the successful implementation of Industrial AI and would lead to enormous benefits that didn't exist before. Unlike general artificial intelligence which is a frontier research discipline to build computerized systems that perform tasks requiring human intelligence, industrial AI is more concerned with the application of such technologies to address industrial pain-points for customer value creation, productivity improvement, and insight discovery.[4] Although in a dystopian vision of AI applications, intelligent machines may take away jobs of humans and cause social and ethical issues, industry in general holds a more positive view of AI and sees this transformation of economy unstoppable and expects huge business opportunities in this process.[5].

The concept of artificial intelligence was initially proposed in the 1940s,[5] and the idea of improving productivity and gaining insights through smart analytics and modelling is not new. Artificial Intelligence and Knowledge-Based systems have been an active research branch of artificial intelligence for the entire product life cycle for product design, production planning, distribution, and field services.[6] E-manufacturing systems and e-factories[7] did not use the term “AI,” but they scale up modeling of engineering systems to enable complete integration of elements in the manufacturing eco-system for smart operation management. Cloud Foundry service platforms widely embed the artificial intelligent technologies.[8][9] Cybermanufacturing systems also apply predictive analytics and cyber-physical modeling to address the gap between production and machine health for optimized productivity.[10]

Recently, to accelerate leadership in AI initiative, the US government launched an official website AI.gov to highlight its priorities in the AI space.[11] There are several reasons for the recent popularity of industrial AI: More affordable sensors and the automated process of data acquisition; More powerful computation capability of computers to perform more complex tasks at a faster speed with lower cost; Faster connectivity infrastructure and more accessible cloud services for data management and computing power outsourcing.[12] However, the technology alone never creates any business value if the problems in industry are not well studied. The major categories which industrial AI may contribute to include; product and service innovation, process improvement, and insight discovery.[12]

Categories

Product applications for user value creation

Industrial AI can be embedded to existing products or services to make them more effective, reliable, safer, and to enhance their longevity.[12] The automotive industry, for example, uses computer vision to avoid accidents and enable vehicles to stay in lane, facilitating safer driving. In manufacturing, one example is the prediction of blade life for self-aware band saw machines, so that users will be able to rely on evidence of degradation rather than experience, which is safer, will extend blade life, and build up blade usage profile to help blade selection.[13][14]

Process applications for productivity improvement

Automation is one of the major aspects in process applications of industrial AI.[12] With the help of AI, the scope and pace of automation have been fundamentally changed.[15] AI technologies boost the performance and expand the capability of conventional AI applications. An example is the collaborative robots. Collaborative robotic arms are able to learn the motion and path demonstrated by human operators and perform the same task.[16] AI also automates the process that used to require human participation. An example is the Hong Kong subway, where an AI program decides the distribution and job scheduling of engineers with more efficiency and reliability than human counterparts do.

Another aspect of process applications is the modeling large-scale systems.[12] Cybermanufacturing systems are defined as a manufacturing service system that is networked and resilient to faults by evidence-based modeling and data-driven deep learning.[10] Such a system deals with large and usually geographically distributed assets, which is hard to be modeled via conventional individual-asset physics-based model.[17][18] With machine learning and optimization algorithms, a bottom-up framework considering machine health can leverage large samples of assets and automate the operation management, spare part inventory planning, and maintenance scheduling process.

Insight applications for knowledge discovery

Industrial AI can also be used for knowledge discovery by identifying insights in engineering systems.[12] In aviation and aeronautics, AI has been playing a vital role in many critical areas, one of which is safety assurance and root cause. NASA is trying to proactively manage risks to aircraft safety by analyzing flight numeric data and text reports in parallel to not only detect anomalies but also relate it to the causal factors. This mined insight of why certain faults happen in the past will shed light on predictions of similar incidents in the future and prevent problems before they occur.[19]

Predictive and preventive maintenance through data-driven machine learning is also critical in cost reduction for industrial applications. Prognostics and health management (PHM) programs capture the opportunities at the shop floor by modeling equipment health degradation.

Challenges

The challenges of industrial AI to unlock the value lies in the transformation of raw data to intelligent predictions for rapid decision-making. In general, there are four major challenges in realizing industrial AI.[2]

Data

Engineering systems now generate a lot of data and modern industry is indeed a big data environment. However, industrial data usually is structured, but may be low-quality.

Speed

Production process happens fast and the equipment and work piece can be expensive, the AI applications need to be applied in real-time to be able to detect anomalies immediately to avoid waste and other consequences. Cloud-based solutions can be powerful and fast, but they still would not fit certain computation efficiency requirements. Edge computing may be a better choice in such scenario.[2]

High fidelity requirement

Unlike consumer-faced AI recommendations systems which have a high tolerance for false positives and negatives, even a very low rate of false positives or negatives rate may cost the total credibility of AI systems. Industrial AI applications are usually dealing with critical issues related to safety, reliability, and operations. Any failure in predictions could incur a negative economic and/or safety impact on the users and discourage them to rely on AI systems.[2]

Interpretability

Besides prediction accuracy and performance fidelity, the industrial AI systems must also go beyond prediction results and give root cause analysis for anomalies. This requires that during development, data scientists need to work with domain experts and include domain know-how into the modeling process, and have the model adaptively learn and accumulate such insights as knowledge.[2]

See also

References

  1. ^ Lee, Jay (2020). Industrial AI: Applications with Sustainable Performance. Springer Singapore. ISBN 978-981-15-2143-0.
  2. ^ a b c d e Yao, Mariya. "4 Unique Challenges Of Industrial Artificial Intelligence". Forbes. Retrieved 9 May 2017.
  3. ^ Lee, Jay; Singh, Jaskaran; Azamfar, Moslem (21 October 2019). "Industrial Artificial Intelligence". arXiv:1908.02150 [cs].
  4. ^ Sallomi, Paul. "Artificial Intelligence Goes Mainstream". The Wall Street Journal. The Wall Street Journal - CIO Journal - Deloitte. Retrieved 9 May 2017.
  5. ^ a b "Preparing for the Future of Artificial Intelligence" (PDF). National Science and Technology Council. Retrieved 10 May 2017.
  6. ^ Fox, Mark (1986). "Industrial Applications of Artificial Intelligence". Robotics. 2 (4): 301–311. doi:10.1016/0167-8493(86)90003-3.
  7. ^ Waurzyniak, Patrick. "Moving towards e-factory". SME Manufacturing Magazine.
  8. ^ "Predix". General Electric. Retrieved 9 May 2017.
  9. ^ "IBM Bluemix". IBM. Retrieved 9 May 2017.
  10. ^ a b "Cybermanufacturing Systems". National Science Foundation. Retrieved 9 May 2017.
  11. ^ "Artificial Intelligence for the American People". The White House. Retrieved 19 March 2019.
  12. ^ a b c d e f Schatsky, David; Muraskin, Craig; Gurumurthy, Ragu. "Cognitive technologies: The real opportunities for business". Deloitte Review.
  13. ^ "【世界翻轉中】不怕機器翻臉 感應器讀懂它的心! - YouTube". Youtube. Retrieved 9 May 2017.
  14. ^ Yang, Shanhu; Begheri, Behrad; Kao, Hung-An; Lee, Jay (2015). "A Unified Framework and Platform for Designing of Cloud-Based Machine Health Monitoring and Manufacturing Systems". Journal of Manufacturing Science and Engineering. 137 (4). doi:10.1115/1.4030669.
  15. ^ Manyika, James; Chui, Michael; Miremadi, Mehdi; Bughin, Jacques; George, Katy; Willmott, Paul; Dewhurst, Martin (2017). "A Future that Works: Automation, Employment, and Productivity". Retrieved 9 May 2017. {{cite journal}}: Cite journal requires |journal= (help)
  16. ^ "What Does Collaborative Robot Mean ?". Retrieved 9 May 2017.
  17. ^ Jin, Chao; Djurdjanovic, Dragan; Ardakani Davari, Hossein; Wang, Keren; Buzza, Mathew; Begheri, Behrad; Brown, Patrick; Lee, Jay (2015). "A comprehensive framework of factory-to-factory dynamic fleet-level prognostics and operation management for geographically distributed assets". 2015 IEEE International Conference on Automation Science and Engineering (CASE): 225–230. doi:10.1109/CoASE.2015.7294066. ISBN 978-1-4673-8183-3.
  18. ^ Feng, Jianshe; Jia, Xiaodong; Zhu, Feng; Yang, Qibo; Pan, Yubin; Lee, Jay (2019-11-22). "An intelligent system for offshore wind farm maintenance scheduling optimization considering turbine production loss". Journal of Intelligent & Fuzzy Systems. 37 (5): 6911–6923. doi:10.3233/jifs-190851. ISSN 1064-1246.
  19. ^ Laskowski, Nicole. "NASA uses text analytics to bolster aviation safety". TechTarget Network. Retrieved 9 May 2017.