Jump to content

Bristol Theseus

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Pieter1963 (talk | contribs) at 23:14, 23 August 2020 (added heat exchanger details, shuffled existing text). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Theseus
Preserved Bristol Theseus
Type Turboprop
Manufacturer Bristol Siddeley
First run 18 July Template:Avyear
Major applications Handley Page Hermes

The Theseus was the Bristol Aeroplane Company's first attempt at a gas-turbine engine design. A turboprop delivering just over 2,000 hp (1,500 kW) was chosen rather than compete with companies that were already developing turbojets. A heat exchanger to transfer waste heat from the exhaust to the compressor exit was necessary to meet a requirement for a fuel consumption comparable to a piston engine. The heat exchanger was abandoned after tests showed it had a high pressure loss and saved much less fuel than had been expected.[1]

As well as being one of the first engines to feature a free propeller turbine, the Theseus was the first turboprop in the world to pass a type test in January 1947.[2] Following 156 hours of ground runs and the receipt of a test certificate from the Ministry of Supply on 28 January 1947, two Theseus engines were fitted in the outer positions of a four-engined Avro Lincoln for air tests.[3] After ground and taxying test the Lincoln first flew on 17 February 1947.[3]

The engine was also installed in two Handley Page Hermes 5 development aircraft.[4]

It was soon superseded by the Proteus design with more power.

Applications

Bristol Theseus on public display

East Midlands Aeropark Castle Donington.

Variants

Theseus Series TH.11
Variant without heat exchanger
Theseus Series TH.21
Variant with heat exchanger
Theseus 502

Specifications (Theseus Th.21)

Data from Aircraft Engines of the world 1946[6]

General characteristics

  • Type: Mixed compressor turboprop with heat exchanger
  • Length: 106 in (2.69 m)
  • Diameter: 49 in (1.24 m)
  • Dry weight: 2,310 lb (1,050 kg)

Components

  • Compressor: 8-stage axial + 1-stage centrifugal compressors feeding the combustion chambers through a heat exchanger
  • Combustors: 8 x stainless steel can combustion chambers
  • Turbine: 2-stage axial + 1-stage axial free turbine driving the propeller
  • Fuel type: Kerosene (R.D.E. / F / KER)
  • Oil system: pressure feed to bearings, dry sump, 40 S.U. secs (13 cSt) (Intavia 620) grade oil

Performance

See also

References

Notes

  1. ^ Turbojet History And Development 1930-1960 Volume 1, Antony Kay2007, ISBN 978 1 86126 912 6, p.139 Parameter error in {{ISBN}}: invalid character
  2. ^ http://www.flightglobal.com/pdfarchive/view/1947/1947%20-%200602.html
  3. ^ a b "Theseus Air Testing - First Bristol Airscrew Turbines Fly in a Lincoln : Some Features Discussed". Flight: 270. 27 March 1947.
  4. ^ Gunston 1989, p.34.
  5. ^ Test bed only
  6. ^ Wilkinson, Paul H. (1946). Aircraft Engines of the world 1946. London: Sir Isaac Pitman & Sons. pp. 284–285.
  7. ^ 2,200 hp (1,600 kW) plus 825 lbf (3.67 kN) residual thrust

Bibliography

  • Gunston, Bill. World Encyclopedia of Aero Engines. Cambridge, England. Patrick Stephens Limited, 1989. ISBN 1-85260-163-9