Jump to content

Disorder problem

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Certes (talk | contribs) at 12:52, 31 August 2020 (Fix surname link). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In the study of stochastic processes in mathematics, a disorder problem or quickest detection problem (formulated by Kolmogorov) is the problem of using ongoing observations of a stochastic process to detect as soon as possible when the probabilistic properties of the process have changed. This is a type of change detection problem.

An example case is to detect the change in the drift parameter of a Wiener process.[1]

See also

[edit]

Notes

[edit]
  1. ^ Shiryaev (2007) page 208

References

[edit]
  • H. Vincent Poor and Olympia Hadjiliadis (2008). Quickest Detection (First ed.). Cambridge: Cambridge University Press. ISBN 978-0-521-62104-5.
  • Shiryaev, Albert N. (2007). Optimal Stopping Rules. Springer. ISBN 978-3-540-74010-0.
  • Gapeev, P.V. (2005). "The disorder problem for compound Poisson processes with exponential jumps". Ann. Appl. Probab. 15 (1A): 487–499. arXiv:math/0503481. doi:10.1214/105051604000000981.
  • Kolmogorov, A. N., Prokhorov, Yu. V. and Shiryaev, A. N. (1990). Methods of detecting spontaneously occurring effects. Proc. Steklov Inst. Math. 1, 1–21.