Jump to content

Contracted Bianchi identities

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 19:51, 8 September 2020 (Alter: url. Add: s2cid. | You can use this bot yourself. Report bugs here. | Suggested by SemperIocundus | via #UCB_webform). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In general relativity and tensor calculus, the contracted Bianchi identities are[1]:

where is the Ricci tensor, the scalar curvature, and indicates covariant differentiation.

A proof can be found in the entry Proofs involving covariant derivatives.

These identities are named after Luigi Bianchi, although they had been already derived by Aurel Voss in 1880.[2] In the Einstein field equations, the contracted Bianchi identity ensures consistency with the vanishing divergence of the matter stress-energy tensor.

See also

Notes

  1. ^ Bianchi, Luigi (1902), "Sui simboli a quattro indici e sulla curvatura di Riemann", Rend. Acc. Naz. Lincei (in Italian), 11 (5): 3–7
  2. ^ Voss, A. (1880), "Zur Theorie der Transformation quadratischer Differentialausdrücke und der Krümmung höherer Mannigfaltigketien", Mathematische Annalen, 16: 129–178, doi:10.1007/bf01446384, S2CID 122828265

References

  • Lovelock, David; Hanno Rund (1989) [1975]. Tensors, Differential Forms, and Variational Principles. Dover. ISBN 978-0-486-65840-7.
  • Synge J.L., Schild A. (1949). Tensor Calculus. first Dover Publications 1978 edition. ISBN 978-0-486-63612-2.
  • J.R. Tyldesley (1975), An introduction to Tensor Analysis: For Engineers and Applied Scientists, Longman, ISBN 0-582-44355-5
  • D.C. Kay (1988), Tensor Calculus, Schaum’s Outlines, McGraw Hill (USA), ISBN 0-07-033484-6
  • T. Frankel (2012), The Geometry of Physics (3rd ed.), Cambridge University Press, ISBN 978-1107-602601