Jump to content

Solar eclipse of August 21, 1914

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Goldenbear1970 (talk | contribs) at 04:36, 1 December 2020 (Add content re other observers.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Solar eclipse of August 21, 1914
Map
Type of eclipse
NatureTotal
Gamma0.7655
Magnitude1.0328
Maximum eclipse
Duration134 s (2 min 14 s)
Coordinates54°30′N 27°06′E / 54.5°N 27.1°E / 54.5; 27.1
Max. width of band170 km (110 mi)
Times (UTC)
Greatest eclipse12:34:27
References
Saros124 (49 of 73)
Catalog # (SE5000)9314

A total solar eclipse occurred on August 21, 1914. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The totality of this eclipse was visible from northern Canada, Greenland, Norway, Sweden, Russian Empire (the parts now belonging to Åland Islands, Finland, Estonia, Latvia, Lithuania, Belarus, Ukraine and Russia, including cities of Riga, Minsk, Kiev and northeastern part of Vilnius), Ottoman Empire (the parts now belonging to Turkey, northeastern tip of Syria and northern Iraq), Persia and British Raj (the parts now belonging to Pakistan and western tip of India). It was the first of four total solar eclipses that would be seen from Sweden during the next 40 years. This total solar eclipse occurred in the same calendar date as 2017, but at the opposite node. The moon was just 2.7 days before perigee, making it fairly large.

A number of observatories sent expeditions to Russia to observe the eclipse including those from Argentina, England, Germany, Russia, and the United States. The expeditions led by Charles Dillon Perrine of the Argentine National Observatory, Erwin Finlay-Freundlich of the Berlin-Babelsberg Observatory, Germany, and William W. Campbell of the Lick Observatory, California, included in their programs the attempt to verify the general relativity theory of Albert Einstein. However, World War I broke out and Freundlich and his equipment were interned in Russia, unable to carry out the necessary measurements. C. D. Perrine and W. W. Campbell, from neutral countries, Argentina and the United States, were permitted to continue with their plans, but clouds obscured the eclipse.[1][2] Perrine was able to obtain one photograph of the eclipse but the thin cloud cover was enough to obscure star locations.[3][4]

Solar eclipses of 1913–1917

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The partial solar eclipses on April 6, 1913 and September 30, 1913 occur in the previous lunar year eclipse set, and the solar eclipses on December 24, 1916 (partial), June 19, 1917 (partial), and December 14, 1917 (annular) occur in the next lunar year eclipse set.

Solar eclipse series sets from 1913 to 1917
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
114 August 31, 1913

Partial
1.4512 119 February 25, 1914

Annular
−0.9416
124 August 21, 1914

Total
0.7655 129 February 14, 1915

Annular
−0.2024
134 August 10, 1915

Annular
0.0124 139
February 3, 1916

Total
0.4987
144 July 30, 1916

Annular
−0.7709 149 January 23, 1917

Partial
1.1508
154 July 19, 1917

Partial
−1.5101

Saros 124

This eclipse is a part of Saros series 124, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on March 6, 1049. It contains total eclipses from June 12, 1211 through September 22, 1968, and a hybrid eclipse on October 3, 1986. There are no annular eclipses in this set. The series ends at member 73 as a partial eclipse on May 11, 2347. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 5 minutes, 46 seconds on May 3, 1734. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

Series members 43–64 occur between 1801 and 2200:
43 44 45

June 16, 1806

June 26, 1824

July 8, 1842
46 47 48

July 18, 1860

July 29, 1878

August 9, 1896
49 50 51

August 21, 1914

August 31, 1932

September 12, 1950
52 53 54

September 22, 1968

October 3, 1986

October 14, 2004
55 56 57

October 25, 2022

November 4, 2040

November 16, 2058
58 59 60

November 26, 2076

December 7, 2094

December 19, 2112
61 62 63

December 30, 2130

January 9, 2149

January 21, 2167
64

January 31, 2185

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

References

  1. ^ Campbell,W.W.&H.D.Curtis (1914). "The Lick Observatory-Crocker Eclipse Expedition to Brovarý, Russia". Publications of the Astronomical Society of the Pacific. 26 (156): 225–237.
  2. ^ Perrine, Charles D. (1923). "Contribution to the history of attempts to test the theory of relativity by means of astronomical observations". Astronomische Nachrichten. 219 (17): 281–284. doi:https://doi.org/10.1002/asna.19232191706. {{cite journal}}: Check |doi= value (help); External link in |doi= (help)
  3. ^ Minniti, E. & S. Paolantonio (2013). Cordoba Estelar. Cordoba, Argentina: Universidad Nacional de Cordoba. pp. 402–425.
  4. ^ Minniti, E. & S. Paolantonio (2013). Cordoba Estelar (PDF). Cordoba, Argentina: Universidad Nacional de Cordoba. pp. 402–425.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Solar Eclipses of Saros 124". eclipse.gsfc.nasa.gov.