Jump to content

Al-Salam–Carlitz polynomials

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, Al-Salam–Carlitz polynomials U(a)
n
(x;q) and V(a)
n
(x;q) are two families of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Waleed Al-Salam and Leonard Carlitz (1965). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14.24, 14.25) give a detailed list of their properties.

Definition

The Al-Salam–Carlitz polynomials are given in terms of basic hypergeometric functions by

References

  • Al-Salam, W. A.; Carlitz, L. (1965), "Some orthogonal q-polynomials", Mathematische Nachrichten, 30 (1–2): 47–61, doi:10.1002/mana.19650300105, ISSN 0025-584X, MR 0197804
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096

Further reading

  • Wang, M. (2009). -integral representation of the Al-Salam–Carlitz polynomials. Applied Mathematics Letters, 22(6), 943-945.
  • Askey, R., & Suslov, S. K. (1993). The -harmonic oscillator and the Al-Salam and Carlitz polynomials. Letters in Mathematical Physics, 29(2), 123-132.
  • Chen, W. Y., Saad, H. L., & Sun, L. H. (2010). An operator approach to the Al-Salam–Carlitz polynomials. Journal of Mathematical Physics, 51(4).
  • Kim, D. (1997). On combinatorics of Al-Salam Carlitz polynomials. European Journal of Combinatorics, 18(3), 295-302.
  • Andrews, G. E. (2000). Schur's theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. Contemporary Mathematics, 254, 45-56.
  • Baker, T. H., & Forrester, P. J. (2000). Multivariable Al–Salam & Carlitz Polynomials Associated with the Type A –Dunkl Kernel. Mathematische Nachrichten, 212(1), 5-35.