Jump to content

Balian–Low theorem

From Wikipedia, the free encyclopedia
(Redirected from Balian-Low theorem)
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, the Balian–Low theorem in Fourier analysis is named for Roger Balian and Francis E. Low. The theorem states that there is no well-localized window function (or Gabor atom) g either in time or frequency for an exact Gabor frame (Riesz Basis).

Statement

Suppose g is a square-integrable function on the real line, and consider the so-called Gabor system

for integers m and n, and a,b>0 satisfying ab=1. The Balian–Low theorem states that if

is an orthonormal basis for the Hilbert space

then either

Generalizations

The Balian–Low theorem has been extended to exact Gabor frames.

See also

References

  • Benedetto, John J.; Heil, Christopher; Walnut, David F. (1994). "Differentiation and the Balian–Low Theorem". Journal of Fourier Analysis and Applications. 1 (4): 355–402. CiteSeerX 10.1.1.118.7368. doi:10.1007/s00041-001-4016-5.

This article incorporates material from Balian-Low on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.