Jump to content

Centered set

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, in the area of order theory, an upwards centered set S is a subset of a partially ordered set, P, such that any finite subset of S has an upper bound in P. Similarly, any finite subset of a downwards centered set has a lower bound. An upwards centered set can also be called a consistent set. Any directed set is necessarily centered, and any centered set is a linked set.

A subset B of a partial order is said to be σ-centered if it is a countable union of centered sets.

References

  • Fremlin, David H. (1984). Consequences of Martin's axiom. Cambridge tracts in mathematics, no. 84. Cambridge: Cambridge University Press. ISBN 0-521-25091-9.
  • Davey, B. A.; Priestley, Hilary A. (2002), "9.1: Definitions", Introduction to Lattices and Order (2nd ed.), Cambridge University Press, p. 201, ISBN 978-0-521-78451-1, Zbl 1002.06001.